OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 30, Iss. 22 — Aug. 1, 1991
  • pp: 3145–3153

Estimation of optical parameters in a living tissue by solving the inverse problem of the multiflux radiative transfer

Leonid Fukshansky, Nina Fukshansky-Kazarinova, and Alexander Martinez v. Remisowsky  »View Author Affiliations


Applied Optics, Vol. 30, Issue 22, pp. 3145-3153 (1991)
http://dx.doi.org/10.1364/AO.30.003145


View Full Text Article

Enhanced HTML    Acrobat PDF (1074 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Calculations of radiative transfer require knowledge of the absorption and scattering coefficients and the asymmetry factor of scattering in the medium. A method is presented for estimating these coefficients in living plant leaves from fiber-optic measurements. We consider the plant leaf as consisting of two layers of different refractive indices and with reflecting surfaces. Light intensities at the boundaries of these layers in several irradiated plant leaves have been measured using a thin (70-μm) glass fiber connected to a photomultiplier. The diffuse reflection and transmission were measured with an integrating sphere. From these values we derive an estimation of the scattering and absorption coefficients and the asymmetry factor of scattering applying an inversion of the multiflux theory of light propagation in turbid media. In addition, we compare these coefficients with those obtained by using the Kubelka–Munk theory.

© 1991 Optical Society of America

History
Original Manuscript: December 29, 1989
Published: August 1, 1991

Citation
Leonid Fukshansky, Nina Fukshansky-Kazarinova, and Alexander Martinez v. Remisowsky, "Estimation of optical parameters in a living tissue by solving the inverse problem of the multiflux radiative transfer," Appl. Opt. 30, 3145-3153 (1991)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-30-22-3145


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Fukshansky, “Optical properties of plant tissue,” in Plants and the Daylight Spectrum, H. Smith, ed. (Academic, London, 1981), pp. 21–40.
  2. C. J. Gomer, guest ed., special issue on photodynamic therapy, Photochem. Photobiol.46 (1987).
  3. E. Schafer, L. Fukshansky, W. Shropshire, “Action spectroscopy of photoreversible pigment systems,” in Photo-morphogenesis Encyclopedia of Plant Physiology, N.S. 16A, W. Shropshire, H. Mohr, eds. (Springer-Verlag, Berlin, 1883), pp. 31–68.
  4. L. Fukshansky, “Absorption statistics in turbid media,” J. Quant. Spectrosc. Radiat. Transfer 38, 389–406 (1987). [CrossRef]
  5. R. A. J. Groenhuis, H. A. Ferwerda, J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements,” Appl. Opt. 22, 2456–2467 (1983). [CrossRef] [PubMed]
  6. S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–317 (1987).
  7. L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the gallaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  8. G. Yoon, A. J. Welch, M. Motamedi, M. C. J. van Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. QE-23, 1721–1732 (1987). [CrossRef]
  9. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  10. A. Schuster, “Radiation through a foggy atmosphere,” Astrophys. J. 21, 1 (1905); reprinted in D. H. Menzel, Selected Papers on the Transfer of Radiation (Dover, New York, 1966). [CrossRef]
  11. L. Silberstein, “The transparency of turbid media,” Philos. Mag. 4, 1291–1302 (1927).
  12. P. Kubelka, F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys. 11a, 593–601 (1931).
  13. P. Kubelka, “New contributions to the optics of intensely light-scattering materials. Part I,” J. Opt. Soc. Am. 38, 448–656 (1948). [CrossRef] [PubMed]
  14. J. W. Ryde, “The scattering of light by turbid media. Part I,” Proc. R. Soc. London Ser. A 131, 451–463 (1931). [CrossRef]
  15. J. W. Ryde, B. S. Cooper, “The Scattering of light by turbid media. Part II” Proc. R. Soc. London Ser. A 131, 464–476 (1931). [CrossRef]
  16. S. Q. Duntley, “The optical properties of diffusing materials,” J. Opt. Soc. Am. 32, 61–70 (1942). [CrossRef]
  17. H. G. Volz, “Ein Beitrag zur phaenomenologischen Theorie lichtstreuender und absorbierender Medien,” in Proceedings of the Seventh FATIPEC Congress (Verlag Chemie, Weinheim/Bergstrasse, 1964), pp. 194–201.
  18. P. S. Mudgett, L. W. Richards, “Multiple scattering calculations for technology,” Appl. Opt. 10, 1485–1502 (1971). [CrossRef] [PubMed]
  19. M. Seyfried, L. Fukshansky, “Light gradients in plant tissue,” Appl. Opt. 22, 1402–1408 (1983). [CrossRef] [PubMed]
  20. M. Seyfried, L. Fukshansky, E. Schafer, “Correcting remission and transmission spectra of plant tissue measured in glass cuvettes: a technique,” Appl. Opt. 22, 492–696 (1983). [CrossRef] [PubMed]
  21. B. Maheu, J. N. Letoulouzan, G. Gouesbet, “Four-flux models to solve the scattering transfer equation in terms of Lorenz–Mie parameters,” Appl. Opt. 23, 3353–3362 (1984). [CrossRef] [PubMed]
  22. R. G. Giovanelly, “Reflection by Semi-infinite diffusors,” Opt. Acta 2, 153–162 (1955). [CrossRef]
  23. H. C. Hottel, A. F. Sarofim, I. A. Vasalos, W. H. Datzell, “Multiple scattering: comparison of theory with experiment,” J. Heat Transfer 92, 285–292 (1970). [CrossRef]
  24. L. Fukshansky, N. Fukshansky-Kazarinova, “Extension of the Kubelka–Munk theory of light propagation in intensely scattering materials to fluorescent media,” J. Opt. Soc. Am. 70, 1101–1111 (1980). [CrossRef]
  25. T. C. Vogelmann, L. O. Bjorn, “Measurement of light gradients and spectral regime in plant tissue with fiber optic probe,” Physiol. Plant 60, 361–368 (1984), Sec. II, para. 2, line 9. [CrossRef]
  26. N. Fukshansky-Kazarinova, W. Lork, E. Schafer, L. Fukshansky, “Photon flux gradients in layered turbid media: application to biological tissues,” Appl. Opt. 25, 780–788 (1986). [CrossRef] [PubMed]
  27. W. T. Walsh, “The reflection factor of a polished glass surface for diffused light,” Dep. Sci. Ind. Res. Illum. Res. Tech. Pap. 2, 10–76 (1926).
  28. D. B. Judd, “Fresnel reflection of diffusely incident light,” J. Res. Natl. Bur. Stand. 29, 329–332 (1942). [CrossRef]
  29. G. Kortum, Reflectance Spectroscopy: Principles, Methods, Applications (Springer-Verlag, Berlin, 1966), p. 366.
  30. W. F. Kaufmann, K. H. Hartmann, “Internal brightness of disk-shaped samples,” J. Photochem. Photobiol. 1, 337–360 (1988). [CrossRef]
  31. J. McClendon, L. Fukshansky, “On the interpretation of absorption spectra of leaves—I. Introduction and the correction of leaf spectra for surface reflection,” J. Photochem. Photobiol. 51, 203–270 (1990). [CrossRef]
  32. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, London, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited