OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 30, Iss. 7 — Mar. 1, 1991
  • pp: 756–764

Trace detection of hydrazines by optical homodyne interferometry

David L. Mazzoni and Christopher C. Davis  »View Author Affiliations

Applied Optics, Vol. 30, Issue 7, pp. 756-764 (1991)

View Full Text Article

Enhanced HTML    Acrobat PDF (1284 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A photothermal laser interferometric system is described that has sufficient sensitivity to allow the detection of the hydrazines: hydrazine, monomethylhydrazine, and unsymmetrical dimethylhydrazine at part per billion concentrations. A line tunable CO2 laser excites the trace hydrazine molecules in one arm of a modified Jamin interferometer illuminated with a single frequency He–Ne laser. The CO2 laser beam intersects one of the He–Ne beams in the interferometer at a small angle, so there is no interaction of the IR and visible laser beams at any optical components in the system. The system operates with computer control of interferometer alignment, CO2 excitation laser tuning, and data acquisition.

© 1991 Optical Society of America

Original Manuscript: May 9, 1989
Published: March 1, 1991

David L. Mazzoni and Christopher C. Davis, "Trace detection of hydrazines by optical homodyne interferometry," Appl. Opt. 30, 756-764 (1991)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. F. Sevin, “Criteria for a Recommended Standard—Occupational Exposure to Hydrazines,” Division of Criteria Documentation and Standards Development, U.S. Dept. of Health, Education, and Welfare, NIOSH Publ. 78-172 (June1978), p. 280.
  2. John V. Crable, Ed., NIOSH Manual of Analytical Techniques, Edition 2, DHEW (NIOSH) Publ. No. 77-157-C (1984).
  3. J. A. E. Hannum, “Recent Developments in the Toxicology of Propellant Hydrazines,” Chemical Propulsion Information Agency, CPTR 82-15 (June1982).
  4. K. Andersson, C. Hallgren, J-O. Levin, C-A. Nilsson, “Liquid Chromatographic Determination of Hydrazine at Sub-Parts-per-Million Levels in Workroom Air as Benzaldazine with the Use of Chemisorption on Benzaldehyde-Coated Amberlite XAD-2,” Anal. Chem. 56, 1730–1731 (1984). [CrossRef]
  5. J. R. Holtzclaw, S. L. Rose, J. R. Wyatt, D. P. Rounbehler, D. H. Fine, “Simultaneous Determination of Hydrazine, Methylhydrazine, and 1,1-Dimethylhydrazine in Air by Derivatization/Gas Chromatography,” Anal. Chem. 56, 2952–2956 (1984). [CrossRef] [PubMed]
  6. E. S. Fiala, C. Kulakis, “Separation of Hydrazine, Monomethylhydrazine, 1,1-Dimethylhydrazine and 1,2-Dimethylhydrazine by High-Performance Liquid Chromatography with Electrochemical Detection,” J. Chromatogr. 214, 229–233 (1981). [CrossRef]
  7. J. Wang, Z. Taha, “Catalytic-Adsorptive Stripping Voltammetric Measurements of Hydrazines,” Talanta 35, 965–968 (1988). [CrossRef] [PubMed]
  8. G. L. Loper, A. R. Calloway, M. A. Stamps, J. A. Gelbwachs, “Carbon Dioxide Laser Absorption Spectra and Low ppb Photoacoustic Detection of Hydrazine Fuels,” Appl. Opt. 19, 2726–2734 (1980). [CrossRef] [PubMed]
  9. G. L. Loper, G. R. Sasaki, M. A. Stamps, “Absorption Spectra of Toxic Compounds at CO2 Wavelengths,” Proc. Soc. Photo-Opt. Instrum. Eng. 286, 2–6 (1981).
  10. G. L. Loper, G. R. Sasaki, M. A. Stamps, “Carbon Dioxide Laser Absorption Spectra of Toxic Industrial Compounds,” Appl. Opt. 21, 1648–1653 (1982). [CrossRef] [PubMed]
  11. G. L. Loper, J. A. Gelbwachs, S. M. Beck, “CO2-Laser Photoacoustic Spectroscopy Applied to Low-Level Toxic-Vapor Monitoring,” Can. J. Phys. 64, 1124–1131 (1985). [CrossRef]
  12. M. Shaw, Ed., Technical Information Data Sheet on HCl, HCN and Hydrazine Analyzers (Interscan Corp., P.O. Box 2496, Chatsworth, CA 91313-2496, 1990).
  13. J. W. Grate, S. Rose-Pehrsson, W. R. Barger, “Langmuir-Blodgett Films of a Nickel Dithiolene Complex on Chemical Microsensors for the Detection of Hydrazine,” Langmuir 4, 1293–1301 (1988). [CrossRef]
  14. Technical Information Data on Toxic Gas Monitors (MDA Scientific, Inc., 405 Barclay Blvd., Lincolnshire, IL 60069.
  15. G. E. Spangler, D. N. Campbell, K. N. Vora, “Developments in Ion Mobility Spectrometry,” ISA Trans. 23, 17–28 (1984).
  16. F. Karasek, “Trace Analysis and Fundamental Studies by Plasma Chromatography,” Int. J. Environ. Anal. Chem. 2, 157–166 (1972). [CrossRef] [PubMed]
  17. F. Karasek, “Plasma Chromatography,” Anal. Chem. 46, 710A–720A (1974).
  18. C. S. Leasure, G. A. Eiceman, “Continuous Detection of Hydrazine and Monomethylhydrazine Using Ion Mobility Spectrometry,” Anal. Chem. 57, 1890–1894 (1985). [CrossRef]
  19. G. E. Spangler, P. Lawless, “Ionization of Nitrotoluene Compounds in Negative Ion Plasma Chromatography,” Anal. Chem. 50, 884–892 (1978). [CrossRef]
  20. T. F. Jenkins, R. P. Murrmann, D. C. Leggett, “Mass Spectra of Isomers of Trinitrotoluene,” J. Chem. Eng. Data 18, 438–439 (1973). [CrossRef]
  21. J. Yinon, H. G. Boettger, W. P. Weber, “Negative Ion Mass Spectrometry—A New Analytical Method for the Detection of Trinitrotoluene,” Anal. Chem. 44, 2235–2237 (1972). [CrossRef]
  22. J. Willet, Gas Chromatography (Wiley, Chichester, U.K., 1987).
  23. M. W. Sigrist, S. Bernegger, P. L. Meyer, “Atmospheric and Exhaust Air Monitoring by Laser Photoacoustic Spectroscopy,” in Photoacoustic, Photothermal and Photochemical Processes in Gases, P. Hess, Ed. (Springer-Verlag, Berlin, 1989). [CrossRef]
  24. C. C. Davis, S. J. Petuchowski, “Phase Fluctuation Optical Heterodyne Spectroscopy of Gases,” Appl. Opt. 20, 2539–2554 (1981); Errata, 20, 4151–4151 (1981). [CrossRef] [PubMed]
  25. A. C. Tam, “Photoacoustics: Spectroscopy and Other Applications,” in Ultrasensitive Laser Spectroscopy, D. S. Kliger, Ed. (Academic, New York, 1983), pp. 1–108.
  26. P. Hess, J. Pelzl, Eds., Photoacoustic and Photothermal Phenomena (Springer-Verlag, Berlin, 1988).
  27. C. K. M. Patel, R. J. Kerl, “A New Optoacoustic Cell with Improved Performance,” Appl. Phys. Lett. 30, 578–579 (1977). [CrossRef]
  28. N. J. Novichi, J. M. Harris, “Differential Thermal Lens Calorimetry,” Anal. Chem. 52, 2338–2342 (1980). [CrossRef]
  29. D. Fournier, A. C. Boccara, N. M. Amer, R. Gerlach, “Sensitive in situ Trace-Gas Detection by Photothermal Deflection Spectroscopy,” Appl. Phys. Lett. 37, 519–521 (1972). [CrossRef]
  30. M. W. Sigrist, S. Bernegger, P. L. Meyer, “Infrared-Laser Photoacoustic Spectroscopy,” Infrared Phys. 29, 805–814 (1989). [CrossRef]
  31. R. Grisar, H. Preier, G. Schmidtke, G. Restelli, Eds., Monitoring of Gaseous Pollutants by Tunable Diode Lasers (D. Reidel, Dordrecht, The Netherlands, 1987). [CrossRef]
  32. N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser Remote Sensing of Hydrazine, MMH, and UDMH Using a Differential-Absorption CO2 Lidar,” Appl. Opt. 21, 2275–2286 (1982). [CrossRef] [PubMed]
  33. A. J. Campillo, H-B Lin, C. J. Dodge, C. C. Davis, “Stark-Effect-Modulated Phase-Fluctuation Optical Heterodyne Interferometer for Trace-Gas Analysis,” Opt. Lett. 5, 424–426 (1980). [CrossRef] [PubMed]
  34. D. A. Stone, “Auto-Oxidation of Hydrazine Vapor,” U.S. Air Force Syst. Comm. Cir. Env. Eng. Dev. Off. Rep. CEEDO-TR-78-19, NTIS No. AD-A055467 (NTIS, Springfield, VA, 1978).
  35. W-K. Lee, A. Gungor, P-T. Ho, C. C. Davis, “Direct Measurement of Dilute Dye Solution Quantum Yield by Photothermal Laser Heterodyne Interferometry,” Appl. Phys. Lett. 47, 916–918 (1985). [CrossRef]
  36. R. H. Dicke, “The Measurement of Thermal Radiation at Microwave Frequencies,” Rev. Sci. Instrum. 17, 268–275 (1946). [CrossRef] [PubMed]
  37. H. P. Yuen, V. W. S. Chan, “Noise in Homodyne and Heterodyne Detection,” Opt. Lett. 8, 177–179 (1983); Errata, Opt. Lett.8, 345–345 (1983). [CrossRef] [PubMed]
  38. G. L. Abbas, V. W. S. Chan, T. K. Yee, “Local-Oscillator Excess-Noise Suppression for Homodyne and Heterodyne Detection,” Opt. Lett. 8, 419–421 (1983). [CrossRef] [PubMed]
  39. C. C. Davis, “Building Small, Extremely Sensitive Practical Laser Interferometers for Sensor Application,” Nucl. Phys. B. 6, 290–297 (1989). [CrossRef]
  40. B. M. Oliver, “Signal-to-Noise Ratios in Photoelectric Mixing,” Proc. IRE 49, 1960 (1961).
  41. A. J. Campillo, S. J. Petuchowski, C. C. Davis, H-B. Lin, “Fabry Perot Photothermal Trace Detection,” Appl. Phys. Lett. 41, 327–329 (1982). [CrossRef]
  42. F. R. Faxvog, H. W. Mocker, “Rapidly Tunable CO2 TEA Laser,” Appl. Opt. 21, 3986–3987 (1982). [CrossRef] [PubMed]
  43. J. A. Fox, C. R. Gautier, J. L. Ahl, “Rapid Tuning Device for CO2 Heterodyne Detection Lidar,” Rev. Sci. Instrum. 60, 1258–1261 (1989). [CrossRef]
  44. “EVIS Electronic Vibration Isolation System,” in Technical Data Information (Newport Corp., P.O. Box 8020, 18235 Mt. Baldy Circle, Fountain Valley, CA 92728-8020, 1989).
  45. L. T. Molina, W. B. Grant, “FTIR-Spectrometer-Determined Absorption Coefficients of Seven Hydrazine Fuel Gases: Implications for Laser Remote Sensing,” Appl. Opt. 23, 3893–3900 (1984). [CrossRef] [PubMed]
  46. W. B. Grant, “Water Vapor Absorption Coefficients in the 8–13-μm Spectral Region: A Critical Review,” Appl. Opt. 29, 451–462 (1990). [CrossRef] [PubMed]
  47. M. W. Sigrist, “Atmospheric Trace Gas Monitoring by Laser Photoacoustic Spectroscopy,” in Photoacoustic and Photothermal Phenomena, P. Hess, J. Pelzl, Eds. (Springer-Verlag, Berlin, 1988), pp. 114–121.
  48. J. Crank, The Mathematics of Diffusion (Oxford U.P., London, 1956).
  49. National Academy of Sciences, International Chemical Tables of Numerical Data, Physics, Chemistry & Technology (McGraw-Hill, New York, 1933).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited