OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 30, Iss. 7 — Mar. 1, 1991
  • pp: 868–873

Microfabricated incandescent lamps

C. H. Mastrangelo, R. S. Muller, and S. Kumar  »View Author Affiliations

Applied Optics, Vol. 30, Issue 7, pp. 868-873 (1991)

View Full Text Article

Enhanced HTML    Acrobat PDF (1337 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A silicon filament vacuum sealed incandescent light source has been fabricated using IC technology. The incandescent source consists of a heavily doped p+ polysilicon filament coated with silicon nitride and enclosed in a vacuum sealed (≈80-mT) cavity in the silicon chip surface. The filament is electrically heated to reach incandescence at a temperature near 1400 K. The power required to achieve this temperature for a filament 510 × 5 × 1 μm3 is 5 mW yielding a total optical power of 250 μm with a peak distribution wavelength near 2.5 μW. The radiation emitted by this source approximately follows Lambert’s cosine law. The energy conversion efficiency is 5%.

© 1991 Optical Society of America

Original Manuscript: May 7, 1989
Published: March 1, 1991

C. H. Mastrangelo, R. S. Muller, and S. Kumar, "Microfabricated incandescent lamps," Appl. Opt. 30, 868-873 (1991)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. M. Alt, “Performance and Design Considerations of the Thin-Film Tungsten Matrix Display,” IEEE Trans. Electron Devices ED-20, 1006–1015 (1973). [CrossRef]
  2. F. Hochberg, H. K. Seitz, A. V. Brown, “A Thin-Film Integrated Incandescent Display,” IEEE Trans. Electron Devices ED-20, 1002–1005 (1973). [CrossRef]
  3. H. Guckel, D. W. Burns, “Integrated Transducers Based on Blackbody Radiation from Heated Polysilicon Films,” in Transducers’ 85 (11–14 June 1985), pp. 364–366.
  4. G. Lamb, M. Jhabvala, A. Burgess, “Integrated-Circuit Broadband Infrared Source,” NASA Tech Briefs 13, No. 3, 32 (Mar.1989).
  5. R. T. Howe, “Surface Micromachining for Microsensors and Microactuators,” J. Vac. Sci. Technol. B 6(6), 1809–1813 (1988). [CrossRef]
  6. C. H. Mastrangelo, R. S. Muller, “Vacuum-Sealed Silicon Micromachined Incandescent Light Source,” in Technical Digest, IEEE International Electron Devices Meeting (1989), pp. 503–506. [CrossRef]
  7. M. Sekimoto, H. Yoshihara, T. Ohkubo, “Silicon Nitride Single-Layer X-Ray Mask,” J. Vac. Sci. Technol. 21, 1017–1021 (1982). [CrossRef]
  8. C. H. Mastrangelo, Y. C. Tai, R. S. Muller, “Thermophysical Properties of Low-Residual Stress, Silicon-Rich, LPCVD Silicon Nitride Films,” in Transducers’ 89; Sensors Actuators 23(A), 856–860 (1990).
  9. H. Guckel, D. W. Burns, “Fabrication Techniques for Integrated Sensor Microstructures,” in Technical Digest, IEEE International Electron Devices Meeting (1986), pp. 176–179.
  10. S. Sugiyama et al., “Microdiaphragm Pressure Sensor,” in Technical Digest, IEEE International Electron Devices Meeting (1986), pp. 184–187.
  11. H. P. Baltes, F. K. Kneubuhl, “Thermal Radiation in Finite Cavities,” Helv. Phys. Acta 45, 481–529 (1972).
  12. H. P. Baltes, R. Muri, F. K. Kneubuhl, “Spectral Densities of Cavity Resonances and Black Body Radiation Standards in the Submillimeter Wave Region,” in Proceedings, Symposium of Submillimeter Waves (Polytechnic Press, Brooklyn, 1970), Vol. 20, pp. 667–691.
  13. O. S. Heavens, Optical Properties of Thin Solid Films (Academic, New York, 1955).
  14. D. Polder, M. Van Hove, “Theory of Radiative Heat Transfer Between Closely Spaced Bodies,” Phys. Rev. B 4, 3303–3314 (1971). [CrossRef]
  15. C. M. Hargreaves, “Anomalous Radiative Transfer Between Closely-Spaced Bodies,” Phys. Lett. A 30, 491–492 (1969). [CrossRef]
  16. Y. C. Tai, C. H. Mastrangelo, R. S. Muller, “Thermal Conductivity of Heavily Doped Low-Pressure Chemical Vapor Deposited Polycrystalline Silicon Films,” J. Appl. Phys. 63, 1442–1447 (1988); Erratum published in J. Appl. Phys. 66, 3040 (1989). [CrossRef]
  17. F. Llewellyn Jones, The Physics of Electric Contacts (Clarendon, Oxford, 1957).
  18. R. Holm, Electric Contacts (Springer-Verlag, New York, 1967).
  19. T. S. Moss, Optical Properties of Semiconductors (Butterworth, London, 1959).
  20. V. I. Fistul, Heavily Doped Semiconductors (Plenum, New York, 1969).
  21. C. H. Liebert, “Spectral Emissivity of Highly Doped Silicon,” Prog. Astronaut. Aeronaut. 20, 17–40 (1967).
  22. H. Y. Fan, M. Becker, “Infrared Optical Properties of Silicon and Germanium,” Proceedings, Conference on Semiconducting Materials (Butterworth, London, 1951), pp. 132–147.
  23. K. E. Bean, P. S. Gleim, R. L. Yeakley, W. R. Runyan, “Some Properties of Vapor Deposited Silicon Nitride Films Using the SiH4–NH3–H2 System,” J. Electrochem. Soc. 114, 733–737 (1971). [CrossRef]
  24. H. R. Philipp, “Optical Properties of Silicon Nitride,” J. Electrochem. Soc. 120, 295–300 (1973). [CrossRef]
  25. V. I. Belyi et al., Silicon Nitride in Electronics (Elsevier, Amsterdam, 1988).
  26. D. Y. Svet, Thermal Radiation; Metals, Semiconductors, Ceramics, Partly Transparent Bodies and Films (Consultants Bureau, New York, 1965).
  27. H. O. McMahon, “Thermal Radiation from Partially Transparent Reflecting Bodies,” J. Opt. Soc. Am. 40, 376–380 (1950). [CrossRef]
  28. R. Gardon, “The Emissivity of Transparent Materials,” J. Am. Ceram. Soc. 39, 278–287 (1956). [CrossRef]
  29. Y. S. Touloukian, Ed., Thermophysical Properties of Matter, Vol. 8: Thermal Radiative Properties (IFI/Plenum, New York, 1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited