OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 10 — Apr. 1, 1992
  • pp: 1495–1504

Raman scattering measurements in flames using a tunable KrF laser

Joseph A. Wehrmeyer, Tsarng-Sheng Cheng, and Robert W. Pitz  »View Author Affiliations


Applied Optics, Vol. 31, Issue 10, pp. 1495-1504 (1992)
http://dx.doi.org/10.1364/AO.31.001495


View Full Text Article

Enhanced HTML    Acrobat PDF (1346 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a narrow-band tunable KrF excimer laser as a spontaneous vibrational Raman scattering source, we demonstrate that single-pulse concentration and temperature measurements, with only minimal fluorescence interference, are possible for all major species (O2, N2, H2O, and H2) at all stoichiometries (fuel-lean to fuel-rich) of H2–air flames. Photon-statistics-limited precisions in these instantaneous and spatially resolved single-pulse measurements are typically 5%, which are based on the relative standard deviations of single-pulse probability distributions. Optimal tuning of the narrow-band KrF excimer laser (248.623 nm) for the minimization of OH A2Σ−X2Π and O2B3Σu−X3Σg fluorescence interference is determined from fluorescence excitation spectra. In addition to the single-pulse N2 Stokes/anti-Stokes ratio temperature measurement technique, a time-averaged temperature measurement technique is presented that matches the N2 Stokes Raman spectrum to theoretical spectra by using a single intermediate state frequency to account for near-resonance enhancement. Raman flame spectra in CH4–air flames are presented that have good signal-to-noise characteristics and show promise for single-pulse UV Raman measurements in hydrocarbon flames.

© 1992 Optical Society of America

History
Original Manuscript: May 29, 1990
Published: April 1, 1992

Citation
Joseph A. Wehrmeyer, Tsarng-Sheng Cheng, and Robert W. Pitz, "Raman scattering measurements in flames using a tunable KrF laser," Appl. Opt. 31, 1495-1504 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-10-1495


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. C. Drake, R. W. Pitz, M. Lapp, “Laser measurements on nonpremixed H2–air flames for assessment of turbulent combustion models,” AIAA J. 24, 905–917 (1986). [CrossRef]
  2. P. Magre, R. W. Dibble, “Finite chemical kinetic effects in a subsonic turbulent hydrogen flame,” Combust. Flame 73, 195–206 (1988). [CrossRef]
  3. M. P. Lee, P. H. Paul, R. K. Hanson, “Laser-fluorescence imaging of O2 in combustion flows using an ArF laser,” Opt. Lett. 11, 7–9 (1986). [CrossRef] [PubMed]
  4. R. B. Miles, C. Cohen, J. Conners, P. Howard, S. Huang, E. Markovitz, G. Russell, “Velocity measurements by vibrational tagging and fluorescence probing of oxygen,” Opt. Lett. 12, 861–863 (1987). [CrossRef] [PubMed]
  5. L. R. Boedeker, “Velocity measurement by H2O photolysis and laser induced fluorescence of OH,” Opt. Lett. 14, 473–475 (1989). [CrossRef] [PubMed]
  6. T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling of Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140. [CrossRef]
  7. R. W. Pitz, J. A. Wehrmeyer, J. M. Bowling, T. S. Cheng, “Single pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen–air flame,” Appl. Opt. 29, 2325–2332 (1990). [CrossRef] [PubMed]
  8. A. N. Malov, S. Yu. Fedorov, “XeCl and KrF excimer lasers for diagnostics of flames by spontaneous Raman scattering,” Fiz. Goreniya Vzryva 24, 54–58 (1988) [Combust. Explos. Shock Waves USSR 24, 431–434 (1989)].
  9. R. Goulard, A. M. Mellor, R. W. Bilger, “Combustion measurements in air breathing propulsion engines: survey and research needs,” Combust. Sci. Technol. 14, 195–219 (1976). [CrossRef]
  10. P. J. Hargis, “Trace detection of N2 by KrF laser excited spontaneous Raman spectroscopy,” Appl. Opt. 20, 149–152 (1981). [CrossRef] [PubMed]
  11. J. A. Shirley, “UV Raman spectroscopy of H2–air flames excited with a narrowband KrF laser,” Appl. Phys. B 51, 45–48 (1990). [CrossRef]
  12. G. Placzek, “Rayleigh-Streung und Raman Effekt,” in Hand-buch derRadiologie (Akademische Verlag, Leipzig, 1934), Heft 6, Teil 2, pp. 209–347[“The Rayleigh and Raman Scattering,” Lawrence Radiation Lab. Rep. UCRL-Trans-526 (L) (National Technical Information Service, Springfield, Va., 1962)].
  13. D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).
  14. M. Lapp, C. M. Penney, J. A. Asher, “Application of light-scattering techniques for measurements of density, temperature, and velocity in gasdynamics,” AD-759 575 (National Technical Information Service, Springfield, Va., 1973).
  15. M. C. Drake, M. Lapp, C. M. Penny, “Use of the vibrational Raman effect for gas temperature measurements,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1982), Vol. 5, pp. 631–638.
  16. M. Lapp, “Flame temperatures from vibrational Raman scattering,” in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penney, eds. (Plenum, New York, 1974), pp. 107–145.
  17. A. C. Eckbreth, “Averaging considerations for pulsed, laser Raman signals from turbulent combustion media,” Combust. Flame 31, 231–237 (1978). [CrossRef]
  18. Burner purchased from Research Technologies, P.O. Box 384, Pleasanton, Calif. 94566.
  19. Ultrapure n-butyl acetate (99 + %), Alfa Products, 152 Andover St., Danvers, Mass. 01923.
  20. P. Andresen, A. Bath, W. Gröger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 27, 365–378 (1988). [CrossRef] [PubMed]
  21. G. H. Diecke, H. M. Crosswhite, “The UV bands of OH: fundamental data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962). [CrossRef]
  22. D. M. Creek, R. W. Nicholls, “A comprehensive reanalysis of the O2 Schumann–Runge band system,” Proc. R. Soc. London Ser. A 341, 517–536 (1975). [CrossRef]
  23. K. R. German, “Radiative and predissociative lifetimes of the V′ = 0, 1, and 2 levels of the A2Σ+ state of OH and OD,” J. Chem. Phvs. 63, 5252–5255 (1975). [CrossRef]
  24. A. R. Masri, R. W. Bilger, R. W. Dibble, “‘Fluorescence’ interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987). [CrossRef]
  25. J. H. Miller, W. G. Mallard, K. C. Smyth, “The observation of laser-induced visible fluorescence in sooting diffusion flames,” Combust. Flame 47, 205–214 (1982). [CrossRef]
  26. F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985). [CrossRef]
  27. W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.
  28. R. W. Bilger, “Turbulent diffusion flames,” in Annual Review of Fluid Mechanics, J. L. Lumley, M. Van Dyke, H. L. Reed, eds. (Annual Reviews, Palo Alto, Calif., 1989), Vol. 21, pp. 101–135. [CrossRef]
  29. R. S. Barlow, R. W. Dibble, R. P. Lucht, “Simultaneous measurement of Raman scattering and laser-induced OH fluorescence in nonpremixed turbulent jet flames,” Opt. Lett. 14, 263–265 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited