OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 11 — Apr. 10, 1992
  • pp: 1695–1708

d-Dimensional (d ≥ 3) shuffle interconnections

Josef Giglmayr  »View Author Affiliations


Applied Optics, Vol. 31, Issue 11, pp. 1695-1708 (1992)
http://dx.doi.org/10.1364/AO.31.001695


View Full Text Article

Enhanced HTML    Acrobat PDF (1742 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The need for d-dimensional (d ≥ 3) interconnection patterns occurs if d-dimensional data cubes have to be interconnected. The formal definition of such patterns, presented here, is based on the mixed radix numbering of the d-tuple data points. Because each coordinate of a d-dimensional data cube may be factorized in a different way, a family of interconnection patterns is obtained that increases with respect to the dimension of the data cubes. The properties of d-dimensional patterns are analyzed, and their realization in the frequency domain is described. Methods for the three-dimensional layout of the patterns are presented. The application of d-dimensional patterns within multistage interconnection networks is discussed.

© 1992 Optical Society of America

History
Original Manuscript: June 26, 1989
Published: April 10, 1992

Citation
Josef Giglmayr, "d-Dimensional (d ≥ 3) shuffle interconnections," Appl. Opt. 31, 1695-1708 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-11-1695


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Optoelectronic applications of quantum wells,” Opt. Photon. News 1(1), 7–14 (1990). [CrossRef]
  2. J. W. Goodman, “Optical interconnections in the ’80’s,” Opt. Photon. News 1(12), 21–23 (1990). [CrossRef]
  3. J. W. Goodman, “Integrated photonics and optical computing,” in Technical Digest on Integrated Photonics Research, Vol. 8 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper WA1.
  4. J. Giglmayr, “Higher-dimensional interconnection patterns (dim ≥ 3), their topology and performance,” presented at the Tagung der Deutschen Gesellschaft für Angewandte Optik, 16–20 May 1989, Berlin.
  5. A. Aggarwal, J. Park, “Notes on searching in multidimensional monotone arrays,” in Proceedings of the 29th Annual Symposium on Foundations of Computer Science (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 497–512. [CrossRef]
  6. B. K. Jenkins, P. Chavel, R. Forchheimer, A. A. Sawchuk, T. C. Strand, “Architectural implications of a digital optical processor,” Appl. Opt. 23, 3465–3474 (1984). [CrossRef] [PubMed]
  7. D. G. Antzoulatos, “Kronecker and array algebra for parallel image processing,” Ph.D. dissertation, Report 135 (University of Southern California, Los Angeles, Calif., 1988).
  8. A. A. Sawchuk, I. Glaser, “Geometries for optical implementations of the perfect shuffle,” in Optical Computing ’88, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, 270–279 (1988). [CrossRef]
  9. S.-H. Lin, T. F. Krile, J. F. Walkup, “Two-dimensional optical Clos interconnection network and its uses,” Appl. Opt. 27, 1734–1741 (1988). [CrossRef] [PubMed]
  10. T. J. Cloonan, M. J. Herron, “Optical implementation and performance of one-dimensional and two-dimensional trimmed inverse augmented data manipulator networks for multiprocessor systems,” Opt. Eng. 28, 305–314 (1989).
  11. H. S. Hinton, “Overview of free-space photonic switching,” in Technical Digest of the 1990 International Topical Meeting on Photonic Switching (Institute of Electronics, Information, and Communication Engineers, Tokyo, 1990), paper 12D-1.
  12. T. J. Cloonan, F. B. McCormick, “Photonic switching applications of 2-D and 3-D crossover networks based on 2-input, 2-output switching nodes,” Appl. Opt. 30, 2309–2323 (1991). [CrossRef] [PubMed]
  13. A. W. Lohmann, “What classical optics can do for the digital optical computer,” Appl. Opt. 25, 1543–1549 (1986). [CrossRef] [PubMed]
  14. A. W. Lohmann, W. Stork, G. Stucke, “Optical perfect shuffle,” Appl. Opt. 25, 1530–1531 (1986). [CrossRef] [PubMed]
  15. G. E. Lohman, A. W. Lohmann, “Optical interconnection network utilizing diffraction gratings,” Opt. Eng. 27, 893–900 (1988).
  16. K.-H. Brenner, A. Huang, “Optical implementation of the perfect shuffle interconnection,” Appl. Opt. 27, 135–137 (1988). [CrossRef] [PubMed]
  17. C. W. Stirk, R. A. Athale, M. W. Haney, “Folded perfect shuffle optical processor,” Appl. Opt. 27, 202–203 (1988). [CrossRef] [PubMed]
  18. J. Jahns, M. J. Murdocca, “Crossover networks and their optical implementation,” Appl. Opt. 27, 3155–3160 (1988). [CrossRef] [PubMed]
  19. T. Kumagai, K. Ikegaya, “Organization of two-dimensional Omega networks,” Syst. Comput. Jpn. 17, 1–10 (1986). [CrossRef]
  20. J. Giglmayr, “Classification scheme for 3-D shuffle interconnection patterns,” Appl. Opt. 28, 3120–3128 (1989). [CrossRef]
  21. J. Giglmayr, “Transformation of three-dimensional shuffle patterns,” Appl. Opt. 31, 1709–1716 (1992). [CrossRef]
  22. T. H. Szymanski, V. C. Hamacher, “On the permutation capability of multistage interconnection networks,” IEEE Trans. Comput. C-36, 810–822 (1987). [CrossRef]
  23. S. C. Kothari, A. Jhunjhunwala, A. Mukherjee, “Performance analysis of multipath multistage interconnection networks,” in Performance Evaluation Review, Proceedings of the 1988 ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems, (Association for Computing Machinery, New York, 1988), pp. 124–132. [CrossRef]
  24. K. Y. Lee, “Interconnection networks and compiler algorithms for multiprocessors,” Ph.D. dissertation (University of Illinois at Urbana–Champaign, Urbana–Champaign, Ill., 1983).
  25. H. H. Szu, H. J. Caulfield, “The mutual time-frequency content of two signals,” Proc. IEEE 72, 902–908 (1984). [CrossRef]
  26. J. Giglmayr, “Organization of k × k switches (k ≥ 4) interconnected by d-dimensional (d ≥ 2) regular optical patterns,” Appl. Opt. 30, 5119–5135 (1991). [CrossRef]
  27. J. Giglmayr, “Multistage interconnection networks and d-dimensional architectures,” in Photonic Switching II, K. Tada, H. S. Hinton, eds., Vol. 29 of Springer Series on Electronics and Photonics (Springer-Verlag, Berlin, 1990), pp. 220–224. [CrossRef]
  28. J. E. Midwinter, “Novel approach to the design of optically activated wideband switching matrices,” Proc. Inst. Electr. Eng. Part J 134, 261–268 (1987).
  29. N. Ling, M. A. Bayoumi, “Algorithms for high speed multi-dimensional arithmetic and DSP systolic arrays,” in Proceedings of the 1988 International Conference on Parallel Processing, F. A. Briggs, ed. (Pennsylvania State U. Press, University Park, Pa., 1988), pp. 367–374.
  30. D. H. Lawrie, “Access and alignment of data in an array processor,” IEEE Trans. Comput. C-24, 1145–1155 (1975). [CrossRef]
  31. L. N. Bhunyan, D. P. Agrawal, “Design and performance of generalized interconnection networks,” IEEE Trans. Comput. C-32, 1081–1090 (1983). [CrossRef]
  32. M. Davio, “Kronecker products and shuffle algebra,” IEEE Trans. Comput. C-30, 116–125 (1981). [CrossRef]
  33. J. Giglmayr, “Spatial extension of multistage interconnection networks,” in Proceedings on Photonic Switching, J. E. Midwinter, H. S. Hinton, eds., Vol. 3 of OSA 1989 Proceedings Series (Optical Society of America, Washington, D.C., 1989), pp. 170–179.
  34. K. Sapiecha, R. Jarocki, “Modular architecture for high performance implementation of FFT algorithm,” in Proceedings of the 13th Annual International Symposium on Computer Architecture (Institute of Electrical and Electronics Engineers, New York, 1986), pp. 261–270.
  35. S.-T. Huang, S. K. Tripathi, “Finite state model and compatibility theory: new analysis tools for permutation networks,” IEEE Trans. Comput. C-35, 591–601 (1986). [CrossRef]
  36. E.-J. Bachus, R.-P. Braun, C. Caspar, H.-M. Foisel, K. Heimes, N. Keil, B. Strebel, J. Vathke, M. Weickhmann, “Coherent optical multicarrier switching node,” in Technical Digest on Optical Fiber Communications, Vol. 5 of OSA 1989 Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. PD13–1/PD13–3.
  37. G. Grosskopf, R. Ludwig, R. Schnabel, N. Schunk, H. G. Weber, “Frequency conversion by four-wave-mixing in LD amplifiers,” in Photonic Switching II, K. Tada, H. S. Hinton, eds., Vol. 29 of Springer Series on Electronics and Photonics (Springer-Verlag, Berlin, 1990), pp. 226–232. [CrossRef]
  38. M. G. Taylor, J. E. Midwinter, “Optically interconnected switching networks,” IEEE J. Lightwave Technol. 9, 791–798 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited