OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 11 — Apr. 10, 1992
  • pp: 1774–1782

Hybrid optical-electronic logic gates in complementary metal-oxide semiconductor very-large-scale integration

John P. Uyemura and Blanca L. Austin  »View Author Affiliations


Applied Optics, Vol. 31, Issue 11, pp. 1774-1782 (1992)
http://dx.doi.org/10.1364/AO.31.001774


View Full Text Article

Enhanced HTML    Acrobat PDF (893 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photodiodes are integrated into complementary metal-oxide semiconductor very-large-scale integration logic circuits to provide a hybrid interface between parallel-optical and electronic computing formats. This permits direct parallel transfer from an optical processor or storage element to a standard electronic system. The optical input beams may be viewed as control signals or as logical inputs that increase the system complexity and permit direct interaction of the electronic logic circuits with the optical beam states. Applications of the approach include hybrid optical-electronic logic gates, optical control of electronic data paths, and optically reconfigured very-large-scale integration circuits.

© 1992 Optical Society of America

History
Original Manuscript: March 18, 1991
Published: April 10, 1992

Citation
John P. Uyemura and Blanca L. Austin, "Hybrid optical-electronic logic gates in complementary metal-oxide semiconductor very-large-scale integration," Appl. Opt. 31, 1774-1782 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-11-1774


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Guha, J. Bristow, C. Sullivan, A. Hussain, “Optical interconnects for massively parallel architectures,” Appl. Opt. 29, 1077–1093 (1990). [CrossRef] [PubMed]
  2. T. Ichioka, J. Tanida, “Optical parallel logic gates using a shadow-casting system for optical digital computers,” Proc. IEEE 72, 787–801 (1984). [CrossRef]
  3. T. Sakano, K. Noguchi, T. Matsumoto, “Optical limits for spatial interconnection networks using 2-D optical array devices,” Appl. Opt. 29, 1094–1100 (1990). [CrossRef] [PubMed]
  4. M. R. Feldman, C. G. Guest, T. J. Drabik, S. C. Esener, “Comparison between electrical and free-space optical interconnects for fine grain processor arrays based on interconnect density capabilities,” Appl. Opt. 28, 3820–3829 (1989). [CrossRef] [PubMed]
  5. S. Fukushima, T. Kurokawa, H. Suzuki, “Optical implementation of parallel digital adder and subtractor,” Appl. Opt. 29, 2099–2106 (1990). [CrossRef] [PubMed]
  6. F. Lin, E. M. Strzelecki, T. Jannson, “Optical multiplanar VLSI interconnects based on multiplexed waveguide holograms,” Appl. Opt. 29, 1126–1133 (1990). [CrossRef] [PubMed]
  7. A. Dickenson, M. E. Prise, “Free-space optical interconnection scheme,” Appl. Opt. 29, 2001–2005 (1990). [CrossRef]
  8. L. A. Bergman, W. H. Wu, A. R. Johnston, R. Nixon, S. C. Esener, C. C. Guest, P. Yu, T. J. Drabik, M. Feldman, S. H. Lee, “Holographic optical interconnects for VLSI,” Opt. Eng. 25, 1109–1118 (1986).
  9. T. J. Drabik, “Optically interconnected parallel processor arrays,” Ph.D dissertation (Georgia Institute of Technology, Atlanta, Ga., 1989), pp. 112–120.
  10. J. P. Uyemura, Fundamentals of MOS Digital Integrated Circuits (Addison-Wesley, Reading, Mass., 1988).
  11. H. J. Krambeck, C. M. Lee, H. H. S. Law, “High-Speed Compact Circuits with CMOS,” IEEE J. Solid-State Circuits SC-17, 614–619 (1982). [CrossRef]
  12. G. G. Gonclaves, H. J. De Man, “NORA: A racefree dynamic CMOS technique for pipelined logic structures,” IEEE J. Solid-State Circuits SC-18, 261–266 (1983). [CrossRef]
  13. J. P. Uyemura, Circuit Design for CMOS VLSI (Kluwer Academic, Boston, Mass., 1992). [CrossRef]
  14. A. H. Sayles, J. P. Uyemura, “An optoelectronic CMOS memory circuit for parallel detection and storage of optical data,” IEEE J. Solid-State Circuits 26, 1110–1115, (1991). [CrossRef]
  15. A. H. Sayles, “Design of integrated CMOS circuits for parallel detection and storage of optical data,” Ph.D. dissertation (Georgia Institute of Technology, Atlanta, Ga., 1990).
  16. R. I. MacDonald, S. S. Lee, “Photodetector sensitivity control for weight-setting in optoelectronic neural networks,” Appl. Opt. 30, 176–179 (1991). [CrossRef] [PubMed]
  17. D. Psaltis, M. A. Neifeld, A. Yamamura, S. Kobayashi, “Optical memory disks in optical information processing,” Appl. Opt. 29, 2038–2057 (1990). [CrossRef] [PubMed]
  18. W. Zhang, K. Itho, J. Tanida, Y. Ichioka, “Hopfield model with multistage neurons and its optoelectronic implementation,” Appl. Opt. 30, 195–200 (1991). [CrossRef] [PubMed]
  19. P. J. de Groot, R. J. Noll, “Adaptive neural network in a hybrid optical/electronic architecture using lateral inhibition,” Appl. Opt. 28, 3852–3859 (1989). [CrossRef]
  20. C. A. Mead, Analog VLSI and Neural Systems (Addison-Wesley, Reading, Mass., 1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited