OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 31, Iss. 11 — Apr. 10, 1992
  • pp: 1787–1793

Electrophotochromic gratings in photorefractive Bi12TiO20 crystals

A. A. Kamshilin, J. Frejlich, and P. M. Garcia  »View Author Affiliations

Applied Optics, Vol. 31, Issue 11, pp. 1787-1793 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (839 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the first experimental demonstration of quasi-permanent holographic recordings in Bi12TiO20 crystals through what is to our knowledge a new electrophotochromic effect. This arises from spatial redistribution of some centers that are different from photorefractive centers. Light diffracted from this photochromic grating records a secondary photorefractive hologram. Interaction between both gratings results in asymmetric polarization properties and reversible electric field enhancement of diffracted beams.

© 1992 Optical Society of America

Original Manuscript: February 12, 1991
Published: April 10, 1992

A. A. Kamshilin, J. Frejlich, and P. M. Garcia, "Electrophotochromic gratings in photorefractive Bi12TiO20 crystals," Appl. Opt. 31, 1787-1793 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Günter, J. P. Huignard, eds., Photorefractive Materials and Their Applications (Springer-Verlag, Berlin, 1988), Vol. 1. [CrossRef]
  2. L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989). [CrossRef]
  3. S. W. McCahon, D. Rytz, G. C. Valley, M. B. Klein, B. A. Wechsler, “Hologram fixing in Bi12TiO20 using heating and an ac electric field,” Appl. Opt. 28, 1967–1969 (1989). [CrossRef] [PubMed]
  4. J. P. Herriau, J. P. Huignard, “Hologram fixing process at room temperature in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 49, 1140–1142 (1986). [CrossRef]
  5. A. Delboulbe, C. Fromont, J. P. Herriau, S. Mallick, J. P. Huignard, “Quasi-nondestructive readout of holographically stored information in photorefractive Bi12SiO20 crystals,” Appl. Phys. Lett. 55, 713–715 (1989). [CrossRef]
  6. G. S. Trofimov, S. I. Stepanov, “Electrical development of a hologram in a Bi12SiO20 crystal,” Sov. Tech. Phys. Lett. 10, 282–283 (1984).
  7. M. Miteva, L. Nikolova, “Oscillating behaviour of diffracted light on uniform illumination of holograms in photorefractive Bi12TiO20 crystals,” Opt. Commun. 67, 192–194 (1988). [CrossRef]
  8. N. A. Vainos, S. L. Clapham, R. W. Eason, “Multiplexed permanent and real time holographic recording in photorefractive BSO,” Appl. Opt. 28, 4381–4385 (1989). [CrossRef] [PubMed]
  9. J. Frejlich, “Fringe-locked running hologram and multiple photoactive species in Bi12TiO20,” J. Appl. Phys. 68, 3104–3109 (1990). [CrossRef]
  10. A. L. Khromov, A. A. Kamshilin, M. P. Petrov, “Photochromic and photorefractive gratings induced by pulsed excitation in BSO crystals,” Opt. Commun. 77, 139–143 (1990). [CrossRef]
  11. M. P. Petrov, S. V. Miridonov, S. I. Stepanov, V. V. Kulikov, “Light diffraction and nonlinear image processing in electrooptic Bi12SiO20 crystals,” Opt. Commun. 31, 301–305 (1979). [CrossRef]
  12. A. A. Kamshilin, J. Frejlich, L. Cescato, “Photorefractive crystals for the stabilization of the holographic setup,” Appl. Opt. 25, 2376–2381 (1986). [CrossRef]
  13. P. M. Garcia, L. Cescato, L. Frejlich, “Phase-shift measurement in photorefractive holographic recording,” J. Appl. Phys. 66, 47–49 (1989). [CrossRef]
  14. P. A. M. Dos Santos, L. Cescato, J. Frejlich, “Interference-term real-time measurements for self-stabilized two-wave mixing in photorefractive crystals,” Opt. Lett. 13, 1014–1016 (1988). [CrossRef]
  15. A. Marrakchi, R. V. Johnson, A. R. Tanguay, “Polarization properties of photorefractive diffraction in electrooptic and optically active sillenite crystals (Bragg regime),” J. Opt. Soc. Am. B 3, 321–336 (1986). [CrossRef]
  16. P. A. M. Santos, P. M. Garcia, J. Frejlich, “Transport length, quantum efficiency and trap density measurement in Bi12SiO20,” J. Appl. Phys. 66, 247–251 (1989). [CrossRef]
  17. W. Wardzynski, T. Lukasiewicz, J. Zmija, “Reversible photochromic effects in doped single crystal of bismuth germanium (B12GeO20) and bismuth silicon oxide (Bi12SiO20),” Opt. Commun. 30, 203–205 (1979). [CrossRef]
  18. R. M. Pierce, R. S. Cudney, G. D. Bacher, J. Feinberg, “Measuring photorefractive trap density without the electrooptic effect,” Opt. Lett. 15, 414–416 (1990). [CrossRef] [PubMed]
  19. K. Walsh, T. J. Hall, R. E. Burge, “Influence of polarization state and absorption gratings on photorefractive two-wave mixing in GaAs,” Opt. Lett. 12, 1026–1028 (1987). [CrossRef] [PubMed]
  20. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  21. S. L. Clapham, R. W. Eason, N. A. Vainos, “Spatial light modulation via enhanced diffraction efficiency of photochromic gratings in photorefractive BSO,” Opt. Commun. 74, 290–294 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited