OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 31, Iss. 11 — Apr. 10, 1992
  • pp: 1834–1841

Biological photochrome bacteriorhodopsin and its genetic variant Asp96 → Asn as media for optical pattern recognition

Norbert Hampp, Ralph Thoma, Dieter Oesterhelt, and Christoph Bräuchle  »View Author Affiliations

Applied Optics, Vol. 31, Issue 11, pp. 1834-1841 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (1036 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The biological photochrome bacteriorhodopsin (BR) is contained within the purple membrane (PM) of Halobacterium halobium. Artificial derivatives with improved optical properties can be generated by genetic methods and isolated from mutated halobacterial strains. The use of PM films that contain wild-type BR and BR variants as real-time recording media for various holographic applications has been reported previously, and the advantages of BR variants have been demonstrated. The high reversibility (≫ 105 record/erase cycles), the fast time scale of its photoconversions (femtoseconds to milliseconds), and the large photochromic shift (≈ 160 nm) occurring during its photocycle make it a promising material for real-time applications. A dual-axis joint-Fourier-transform (DA-JFT) correlator is used to demonstrate the applicability of PM films in holographic pattern recognition. One major advantage of PM films in this application is their high spatial resolution of more than 5000 lines/mm. Severe restrictions on the overall performance of the DA-JFT correlator system are caused by scattered light and result in a low signal-to-noise ratio. Since PM patches typically have a diameter in the range of the visible wavelengths that are used for hologram recording, light scattering is an intrinsic problem of PM films. The polarization recording properties of PM films are employed to overcome this problem. More than 20-fold improvement of the signal-to-noise ratio in the DA-JFT correlator output is obtained.

© 1992 Optical Society of America

Original Manuscript: October 26, 1990
Published: April 10, 1992

Norbert Hampp, Ralph Thoma, Dieter Oesterhelt, and Christoph Bräuchle, "Biological photochrome bacteriorhodopsin and its genetic variant Asp96 → Asn as media for optical pattern recognition," Appl. Opt. 31, 1834-1841 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964). [CrossRef]
  2. C. S. Weaver, J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966). [CrossRef] [PubMed]
  3. T. C. Lee, J. Rebholz, P. Tamura, “Dual-axis joint-Fourier-transform correlator,” Opt. Lett. 4, 121–123 (1979). [CrossRef] [PubMed]
  4. S. H. Lee, ed., Optical Information Processing, Vol. 48 of Topics in Applied Physics (Springer-Verlag, Berlin, 1981). [CrossRef]
  5. D. Oesterhelt, W. Stoeckenius, “Rhodopsin-like protein from the purple membrane of Halobacterium halobium,” Nature (London) 233, 149–152 (1971).
  6. N. N. Vsevolodov, G. R. Ivanitskii, M. S. Soskin, V. B. Taranenko, “Biochrome films: reversible media for optical recording,” Avtometriya 2, 41–48 (1986).
  7. N. Hampp, C. Bräuchle, D. Oesterhelt, “Optical properties of polymeric films of bacteriorhodopsin and its functional variants: new materials for optical information processing,” in Thin Films in Optics, T. Tschudi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1125, 2–8 (1990).
  8. V. Yu. Bazhenov, M. S. Soskin, V. B. Taranenko, M. V. Vasnetsov, “Biopolymers for real-time optical processing,” in Optical Processing and Computing, A. Arsenault, ed. (Academic, New York, 1989), pp. 103–144.
  9. N. Hampp, C. Bräuchle, “Bacteriorhodopsin and its functional variants: Potential applications in modern optics,” in Photochromism: Molecules and Systems, H. Dürr, H. Bouas-Laurent, eds. (Elsevier, Amsterdam, 1990), pp. 954–975.
  10. P. Kouyama, K. Kinositu, A. Ikegami, “Structure and function of bacteriorhodopsin,” Adv. Biophys. 24, 123–175 (1988). [CrossRef] [PubMed]
  11. T. Kouyama, A. Nasuda-Kouyama, “Turnover rate of the proton pumping cycle of bacteriorhodopsin: pH and light-intensity dependences,” Biochem. 28, 5963–5970 (1989). [CrossRef]
  12. J. Tittor, D. Oesterhelt, “The quantum yield of bacteriorhodopsin,” FEBS Lett. 263, 269–273 (1990). [CrossRef]
  13. N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin wildtype and variant aspartate-96 → asparagine as reversible holographic media,” Biophys. J. 58, 83–93 (1990). [CrossRef] [PubMed]
  14. N. M. Burykin, E. Y. Korchemskaya, M. S. Soskin, V. B. Taranenko, T. V. Dukova, N. N. Vsevolodov, “Photoinduced anisotropy in biochrome films,” Opt. Commun. 54, 68–70 (1985). [CrossRef]
  15. D. Oesterhelt, G. Krippahl, “Phototrophic growth of halobacteria and its use for isolation of photosynthetically deficient mutants,” Ann. Microbiol. (Paris) B 134, 137–150 (1983).
  16. J. Soppa, D. Oesterhelt, “Bacteriorhodopsin mutants of Halobacterium spec GRB. 1. The 5-bromo-2′ deoxyuridine-selection as a method to isolate point mutants in halobacteria,” J. Biol. Chem. 264, 13,043–13,048 (1989).
  17. J. Soppa, J. Otomo, J. Straub, J. Tittor, S. Meessen, D. Oesterhelt, “Bacteriorhodopsin mutants of Halobacterium Spec. GRB. 2. Characterization of mutants,” J. Biol. Chem. 264, 13,049–13,056 (1989).
  18. A. Miller, D. Oesterhelt, “Kinetic optimization of bacteriorhodopsin by aspartic acid 96 as an internal proton donor,” Biochim. Biophys. Acta 1020, 57–64 (1990). [CrossRef]
  19. A. E. Blaurock, W. Stoeckenius, “Structure of the purple membrane,” Nature (London)New Biol. 233, 152–155 (1971).
  20. D. Oesterhelt, W. Stoeckenius, “Functions of a new photoreceptor membrane,” Proc. Natl. Acad. Sci. USA 70, 2853–2857 (1973). [CrossRef] [PubMed]
  21. M. S. Braiman, T. Mogi, T. Marti, L. J. Stern, H. G. Khorana, K. J. Rothschild, “Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96 and 212,” Biochem. 27, 8516–8520 (1988). [CrossRef]
  22. K. Gerwert, B. Hess, J. Soppa, D. Oesterhelt, “The role of aspartate-96 in proton translocation by bacteriorhodopsin,” Proc. Natl. Acad. Sci. USA 86, 4943–4947 (1989). [CrossRef] [PubMed]
  23. G. I. Groma, S. L. Helgerson, P. K. Wolber, D. Beece, Z. Dancsházy, L. Keszthelyi, W. Stoeckenius, “Coupling between the bacteriorhodopsin photocycle and the proton motive force in Halobacterium halobium cell envelope vesicles. II. Quantitation and preliminary modelling of the M → bR reactions,” Biophys. J. 45, 985–992 (1984). [CrossRef] [PubMed]
  24. T. V. Dyukova, N. N. Vsevolodov, L. N. Chekulayeva, “Change in the photochemical activity of bacteriorhodopsin in polymer matrices on its dehydration,” Biophysics 30, 668–672 (1985).
  25. M. Nakasako, M. Kataoka, F. Tokmaga, “Arginine remarkably prolongs the lifetime of the M-intermediate in the bacteriorhodopsin photocyle at room temperature,” FEBS Lett. 254, 211–214 (1989). [CrossRef]
  26. D. S. Chernavskii, I. V. Chizhov, R. H. Lozier, T. M. Murina, A. M. Prokhorov, B. V. Zubov, “Kinetic model of bacteriorhodopsin photocycle: pathway from M-state to bR,” Photochem. Photobiol. 49, 649–653 (1989). [CrossRef] [PubMed]
  27. T. C. Lee, D. Gossen, “Generalized Fourier-transform holography and its applications,” Appl. Opt. 10, 961–963 (1971). [CrossRef] [PubMed]
  28. D. Joyeux, S. Lowenthal, “Optical Fourier transform: what is the optimal setup,” Appl. Opt. 21, 4368–4372 (1982). [CrossRef] [PubMed]
  29. T. Todorov, L. Nikolava, N. Tomova, “Polarisation holography. 2: Polarisation holographic gratings in photoanisotropic materials with and without intrinsic birefringence,” Appl. Opt. 23, 4588–4591 (1984). [CrossRef] [PubMed]
  30. J. P. Herriau, J. P. Huignard, P. Anbourg, “Some polarization properties of volume holograms in Bi12SiSO20 crystals and applications,” Appl. Opt. 17, 1851–1856 (1978). [CrossRef] [PubMed]
  31. B. Javidi, “Comparison of nonlinear joint transform correlator and nonlinear matched filter based correlator,” Opt. Commun. 75, 8–13 (1990). [CrossRef]
  32. X. J. Lu, F. T. S. Yu, D. A. Gregory, “Comparison of VanderLugt and joint transform correlators,” Appl. Phys. B 51, 153–164 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited