OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 15 — May. 20, 1992
  • pp: 2839–2848

Rayleigh–Brillouin scattering to determine one-dimensional temperature and number density profiles of a gas flow field

James A. Lock, Richard G. Seasholtz, and W. Trevor John  »View Author Affiliations


Applied Optics, Vol. 31, Issue 15, pp. 2839-2848 (1992)
http://dx.doi.org/10.1364/AO.31.002839


View Full Text Article

Enhanced HTML    Acrobat PDF (1264 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Rayleigh–Brillouin spectra for heated nitrogen gas were measured by imaging the output of a Fabry–Perot interferometer onto a CCD array. The spectra were compared with the theoretical 6-moment model of Rayleigh–Brillouin scattering convolved with the Fabry–Perot instrument function. Estimates of the temperature and a dimensionless parameter proportional to the number density of the gas as functions of position in the laser beam were calculated by least-squares deviation fits between theory and experiment.

© 1992 Optical Society of America

History
Original Manuscript: December 27, 1990
Published: May 20, 1992

Citation
James A. Lock, Richard G. Seasholtz, and W. Trevor John, "Rayleigh–Brillouin scattering to determine one-dimensional temperature and number density profiles of a gas flow field," Appl. Opt. 31, 2839-2848 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-15-2839


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Benedek, T. Greytak, “Brillouin scattering in liquids,” Proc. IEEE 53, 1623–1629 (1965). [CrossRef]
  2. A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533–535 (1981). [CrossRef] [PubMed]
  3. A. T. Young, “Rayleigh scattering,” Phys. Today 35(1), 42–48 (1982). [CrossRef]
  4. M. Nelkin, A. Ghatak, “Simple binary collision model for Van Hove’s Gs(r, t),” Phys. Rev. A 135, 4–9 (1964).
  5. S. Yip, M. Nelkin, “Application of a kinetic model to time-dependent density correlations in fluids,” Phys. Rev. A 135, 1241–1247 (1964).
  6. S. Ranganathan, S. Yip, “Time-dependent correlations in a Maxwell gas,” Phys. Fluids 9, 372–379 (1966). [CrossRef]
  7. A. Sugawara, S. Yip, L. Sirovich, “Spectrum of density fluctuations in gases,” Phys. Fluids 11, 925–932 (1968). [CrossRef]
  8. A. Sugawara, S. Yip, L. Sirovich, “Kinetic theory analysis of light scattering in gases,” Phys. Rev. 168, 121–123 (1968). [CrossRef]
  9. A. Sugawara, S. Yip, “Kinetic model analysis of light scattering by molecular gases,” Phys. Fluids 10, 1911–1921 (1967). [CrossRef]
  10. C. D. Boley, R. C. Desai, G. Tenti, “Kinetic models and Brillouin scattering in a molecular gas,” Can. J. Phys. 50, 2158–2173 (1972). [CrossRef]
  11. G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285–290 (1974).
  12. M. Hubert, A. D. May, “The Rayleigh–Brillouin spectrum of normal and parahydrogen: A test of model solutions of the Wang–Chang Uhlenbeck equation,” Can. J. Phys. 53, 343–350 (1975). [CrossRef]
  13. T. J. Greytak, G. B. Benedek, “Spectrum of light scattered from thermal fluctuations in gases,” Phys. Rev. Lett. 17, 179–182 (1966). [CrossRef]
  14. E. H. Hara, A. D. May, H. F. P. Knapp, “Rayleigh–Brillouin scattering in compressed H2, D2, and HD,” Can. J. Phys. 49, 420–431 (1971). [CrossRef]
  15. N. A. Clark, “Inelastic light scattering from density fluctuations in dilute gases. The kinetic–hydrodynamic transition in a monatomic gas,” Phys. Rev. A 12, 232–244 (1975). [CrossRef]
  16. R. P. Sandoval, R. L. Armstrong, “Rayleigh-Brillouin spectra in molecular nitrogen,” Phys. Rev. A 13, 752–757 (1976). [CrossRef]
  17. Q. H. Lao, P. E. Schoen, B. Chu, “Rayleigh–Brillouin scattering of gases with internal relaxation,” J. Chem. Phys. 64, 3547–3555 (1976). [CrossRef]
  18. J. E. Fookson, W. S. Gornall, H. D. Cohen, “Scaling behavior in the inert gas Brillouin spectra,” J. Chem. Phys. 65, 350–353 (1976). [CrossRef]
  19. V. Ghaem-Maghami, A. D. May, “Rayleigh–Brillouin spectrum of compressed He, Ne, and Ar. I. Scaling,” Phys. Rev. A 22, 692–697 (1980). [CrossRef]
  20. A. T. Young, G. W. Kattawar, “Rayleigh-scattering line profiles,” Appl. Opt. 22, 3668–3670 (1983). [CrossRef] [PubMed]
  21. C. Y. She, G. C. Herring, H. Moosmüller, S. A. Lee, “Stimulated Rayleigh–Brillouin gain spectroscopy,” Phys. Rev. A 31, 3733–3740 (1985). [CrossRef] [PubMed]
  22. R. Cattolica, F. Robben, L. Talbot, “The interpretation of the spectral structure of Rayleigh scattered light from combustion gases,” in Proceedings of the AIAA Fourteenth Aerospace Sciences Meeting, (American Institute of Aeronautics and Astronautics, New York, 1976), paper 76–31.
  23. R. W. Pitz, R. Cattolica, F. Robben, L. Talbot, “Temperature and density in a hydrogen–air flame from Rayleigh scattering,” Combust. Flame 27, 313–320 (1976). [CrossRef]
  24. R. L. Schwiesow, L. Lading, “Temperature profiling by Rayleigh-scattering lidar,” Appl. Opt. 20, 1972–1979 (1981). [CrossRef] [PubMed]
  25. H. Shimizu, S. A. Lee, C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1381 (1983). [CrossRef] [PubMed]
  26. H. Shimizu, K. Noguchi, C. Y. She, “Atmospheric temperature measurement by a high spectral resolution lidar,” Appl. Opt. 25, 1460–1466 (1986). [CrossRef] [PubMed]
  27. F. J. Lehmann, S. A. Lee, C. Y. She, “Laboratory measurements of atmospheric temperature and backscatter ratio using a high-spectral-resolution lidar technique,” Opt. Lett. 11, 563–565 (1986). [CrossRef] [PubMed]
  28. G. G. Sivjee, T. J. Hallinan, G. R. Swenson, “Fabry–Perot interferometer imaging system for thermospheric temperature and wind measurements,” Appl. Opt. 19, 2206–2209 (1980). [CrossRef] [PubMed]
  29. D. Rees, A. H. Greenway, R. Gordon, I. McWhirter, P. J. Charleton, Å. Steen, “The Doppler imaging system: initial observations of the auroral thermosphere,” Planet. Space Sci. 32, 273–285 (1984). [CrossRef]
  30. V. J. Abreu, W. R. Skinner, “Inversion of Fabry–Perot CCD images: use in Doppler shift measurements,” Appl. Opt. 28, 3382–3386 (1989). [CrossRef] [PubMed]
  31. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), pp. 323–333.
  32. J. M. Vaughn, The Fabry–Perot Interferometer (Hilger, London, 1989), Chap. 3.
  33. G. Hernandez, Fabry–Perot Interferometers (Cambridge U. Press, Cambridge, UK, 1986), Chap. 2.5.1.
  34. Reference 32, Section 3.7.
  35. R. C. Weast, ed., Handbook of Chemistry and Physics (Chemical Rubber, Cleveland, Ohio, 1969), p. F-43.
  36. Ref. 32, p.E-2.
  37. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988), Chap. 8.
  38. J. R. Wolberg, Prediction Analysis (Van Nostrand, Princeton, N.J., 1967), Chap. 8.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited