OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 15 — May. 20, 1992
  • pp: 2942–2951

Optical levitation experiments to assess the validity of the generalized Lorenz–Mie theory

F. Guilloteau, G. Gréhan, and G. Gouesbet  »View Author Affiliations


Applied Optics, Vol. 31, Issue 15, pp. 2942-2951 (1992)
http://dx.doi.org/10.1364/AO.31.002942


View Full Text Article

Enhanced HTML    Acrobat PDF (1154 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Experimental near-forward-scattering diagrams obtained with one particle in optical levitation are recorded and compared with scattering diagrams computed by using the generalized Lorenz–Mie theory. Comparisons concern the particular case of an off-axis location of the particle. Agreement between experimental and computed diagrams is found to be satisfactory.

© 1992 Optical Society of America

History
Original Manuscript: March 18, 1991
Published: May 20, 1992

Citation
F. Guilloteau, G. Gréhan, and G. Gouesbet, "Optical levitation experiments to assess the validity of the generalized Lorenz–Mie theory," Appl. Opt. 31, 2942-2951 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-15-2942


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser Doppler Anemometry (Academic, London, 1981).
  2. W. D. Bachalo, M. J. Houser, “Phase Doppler spray analyzer for simultaneous measurements of the drop size and velocity distribution,” Opt. Eng. 23, 583–590 (1984).
  3. A. Naqwi, F. Durst, X.-Z. Liu, “An extended phase-Doppler system for characterization of multiphase flows,” in Proceedings of the Fifth International Symposium on Application of Laser Techniques to Fluid Mechanics, (Instituto Superior Tecnico, Lisbon, 1990), paper 24–4.
  4. S. A. M. Al-Chalabi, Y. Hardalupas, A. R. Jones, A. M. K. P. Taylor, “Calculation of calibration curves for the phase Doppler technique: comparison between Mie theory and geometrical optics,” in Optical Particle Sizing: Theory and Practice, G. Gouesbet, G. Gréhan, eds. (Plenum, New York, 1988), pp. 107–120.
  5. G. Gréhan, G. Gouesbet, “Simultaneous measurements of the velocities and sizes of particles in flows using a combined system incorporating a top-hat beam system,” Appl. Opt. 25, 3527–3538 (1986). [CrossRef] [PubMed]
  6. F. Corbin, G. Grehan, G. Gouesbet, “Top-hat beam technique: improvements and application to bubble measurements,” Part. Part. Syst. Charact. 8, 222–228 (1991). [CrossRef]
  7. M. Maeda, K. Hishida, “Application of top-hat laser beam to particle sizing in LDV system,” in Optical Particle Sizing: Theory and Practice, G. Gouesbet, G. Gréhan, eds. (Plenum, New York, 1988), pp. 431–441.
  8. G. Gréhan, B. Maheu, G. Gouesbet, “Diffusion de la lumiére par une sphére dans le cas d’un faisceau d’extension finie −2. Theorie de Lorenz–Mie généralisée: application a la granulométrie optique,” J. Aerosol Sci. 19, 55–64 (1988). [CrossRef]
  9. J. P. Chevaillier, J. Fabre, P. Hamelin, “Forward scattered light intensities by a sphere located anywhere in a Gaussian beam,” Appl. Opt. 25, 1222–1225 (1986). [CrossRef] [PubMed]
  10. W. D. Bachalo, S. V. Sankar, “Analysis of the light scattering interferometry for a sphere larger than the light wavelength,” in Proceedings of the Fourth International Symposium on Applications of Laser Anemometry to Fluid Mechanics (Instituto Superior Tecnico, Lisbon, 1990), pp. 1–8.
  11. B. Maheu, G. Gouesbet, G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,” J. Opt. (Paris) 19, 59–67 (1988). [CrossRef]
  12. G. Gouesbet, B. Maheu, G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988). [CrossRef]
  13. G. Gouesbet, G. Gréhan, B. Maheu, “Generalized Lorenz-Mie theory and applications to optical sizing,” in Combustion Measurements, N. Chigier, ed. (Hemisphere, New York, 1991), pp. 339–384.
  14. J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988). [CrossRef]
  15. P. Hamelin, “Application de la diffusion lumineuse à la métrologie des particules en écoulement diphasique dispersé,” thèse (Institut National Polytechnique de Toulouse, Toulouse, France, 1986).
  16. J. P. Chevaillier, J. Fabre, G. Gréhan, G. Gouesbet, “Comparison of diffraction theory and generalized Lorenz–Mie theory for a sphere located on the axis of a laser beam,” Appl. Opt. 29, 1293–1298 (1990). [CrossRef] [PubMed]
  17. G. Gréhan, G. Gouesbet, “Optical levitation of a single particle to study the theory of the quasi-elastic scattering of light,” Appl. Opt. 19, 2485–2487 (1980). [CrossRef] [PubMed]
  18. B. Maheu, G. Gréhan, G. Gouesbet, “Laser beam scattering by individual spherical particles: Numerical results and application to optical sizing,” Part. Part. Syst. Charact. 4, 141–146 (1987). [CrossRef]
  19. A. Ashkin, J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt. 19, 660–668 (1980). [CrossRef] [PubMed]
  20. R. E. Preston, T. R. Lettieri, H. G. Semerjian, “Characterization of single levitated droplets by Raman spectroscopy,” Langmuir ACS J. Surf. Colloids 1, 365–367 (1985). [CrossRef]
  21. N. Y. Misconi, J. P. Olivier, K. F. Ratcliff, E. T. Rusk, W. X. Wang, “Light scattering by laser levitated particles,” Appl. Opt. 29, 2276–2281 (1990). [CrossRef] [PubMed]
  22. G. Gouesbet, G. Gréhan, B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz–Mie theory using finite series,” J. Opt. (Paris) 19, 35–48 (1988). [CrossRef]
  23. G. Gréhan, B. Maheu, G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986). [CrossRef] [PubMed]
  24. G. Gouesbet, G. Gréhan, B. Maheu, “Computations of the gn coefficients in the generalized Lorenz-Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988). [CrossRef] [PubMed]
  25. B. Maheu, G. Gréhan, G. Gouesbet, “Ray localization in Gaussian beam,” Opt. Commun. 70, 259–262 (1989). [CrossRef]
  26. G. Gouesbet, G. Gréhan, B. Maheu, “On the generalized Lorenz–Mie theory: first attempt to design a localized approximation to the computation of the coefficients gnm,” J. Opt. (Paris) 20, 31–43 (1989). [CrossRef]
  27. G. Gouesbet, G. Gréhan, B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. 7, 998–1007 (1990). [CrossRef]
  28. G. Gréhan, G. Gouesbet, “Scattering of a laser beam by one particle: behaviour of gnm coefficients,” in Proceedings of the Third International Aerosol Conference, S. Masuda, K. Takahashi, eds. (Pergamon, Oxford, 1990), pp. 273–276.
  29. G. Gouesbet, B. Maheu, G. Gréhan, “The order of approximation in a theory of the scattering of a Gaussian beam by a Mie scatter center,” J. Opt. (Paris) 16, 239–247 (1985). [CrossRef]
  30. F. Slimani, G. Gréhan, G. Gouesbet, D. Allano, “Near-field Lorenz–Mie theory and its application to microholography,” Appl. Opt. 23, 4140–4148 (1984). [CrossRef] [PubMed]
  31. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156 (1970). [CrossRef]
  32. A. Ashkin, J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–588 (1974). [CrossRef]
  33. G. Roosen, “La léitation optique de sphères,” Can. J. Phys. 57, 1260–1279 (1979). [CrossRef]
  34. G. Roosen, B. Delaunay, C. Imbert, “Etude de la pression de radiation exercée par un faisceau lumineux sur une sphère réfringente,” J. Opt. (Paris) 8, 181–187 (1977). [CrossRef]
  35. A. Ungut, G. Gréhan, G. Gouesbet, “Comparisons between geometrical optics and Lorenz-Mie theory,” Appl. Opt. 20, 2911–2918 (1981). [CrossRef] [PubMed]
  36. H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
  37. H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966). [CrossRef]
  38. P. W. Barber, R. K. Chang, eds., Optical Effects Associated with Small Particles (World Scientific, Singapore, 1988).
  39. R. T. Killinger, R. H. Zerull, “Effects of shape and orientation to be considered for optical particle sizing,” in Optical Particle Sizing: Theory and Practice, G. Gouesbet, G.Gréhan Gréhan, eds. (Plenum, New York, 1988), pp. 419–429.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited