OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 31, Iss. 17 — Jun. 10, 1992
  • pp: 3225–3232

Design of digital–optical processors by using both intensity and polarization–encoding schemes

K. W. Wong, L. M. Cheng, and M. C. Poon  »View Author Affiliations

Applied Optics, Vol. 31, Issue 17, pp. 3225-3232 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (1032 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Here we propose two encoding schemes that utilize both light intensity and polarization to code input data in digital–optical computing. This approach results in a more efficient information carrying and processing technique when compared with the traditional intensity-only or polarization-only encoding schemes. Optical logic units that are based on the proposed encoding schemes are designed. A recursive parallel adder and a carry look-ahead adder that use these logic units as building blocks are also described.

© 1992 Optical Society of America

Original Manuscript: November 15, 1990
Published: June 10, 1992

K. W. Wong, L. M. Cheng, and M. C. Poon, "Design of digital–optical processors by using both intensity and polarization–encoding schemes," Appl. Opt. 31, 3225-3232 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. A. Sawchuk, T. C. Strand, “Digital optical computing,” Proc. IEEE 72, 758–779 (1984). [CrossRef]
  2. W. T. Cathey, K. Wagner, W. J. Miceli, “Digital computing with optics,” Proc. IEEE 77, 1558–1572 (1989). [CrossRef]
  3. K. H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054–3060 (1986). [CrossRef] [PubMed]
  4. A. W. Lohmann, “Polarization and optical logic,” Appl. Opt. 25, 1594–1597 (1986). [CrossRef] [PubMed]
  5. K. H. Brenner, “New implementation of symbolic substitution logic,” Appl. Opt. 25, 3061–3064 (1986). [CrossRef] [PubMed]
  6. A. H. Khan, U. R. Nejib, “Optical logic gates employing liquid crystal optical switches,” Appl. Opt. 26, 270–273 (1987). [CrossRef] [PubMed]
  7. M. T. Fatehi, K. C. Wasmundt, S. A. Collins, “Optical logic-gates using liquid crystal light valve: implementation and application example,” Appl. Opt. 20, 2250–2256 (1981). [CrossRef] [PubMed]
  8. R. A. Athale, H. S. Barr, S. H. Lee, B. J. Bartholomew, “Digital optical processing,” in Real-Time Signal Processing III, T.F. Tao, ed., Proc. Soc. Photo-Opt. Instrum. Eng.241, 149 (1980).
  9. J. L. Jewell, Y. H. Lee, M. Warren, H. M. Gibbs, N. Peyghambarian, A. C. Gossard, W. Wiegmann, “3-pJ, 82 MHz optical logic gates in a room temperature. GaAs–AlGaAs as multiple-quantum-well étalon,” Appl. Phys. Lett. 46, 918–920 (1985). [CrossRef]
  10. M. Mano, Computer Logic Design (Prentice-Hall, Englewood Cliffs, N.J., 1972).
  11. S. Fukushima, T. Kurokawa, H. Suzuki, “Optical implementation of parallel digital adder and subtractor,” Appl. Opt. 29, 2099–2106 (1990). [CrossRef] [PubMed]
  12. P. P. Banerjee, A. Ghafoor, “Design of a pipeline optical binary processor,” Appl. Opt. 27, 4766–4770 (1988). [CrossRef] [PubMed]
  13. V. Chandran, T. F. Krile, J. F. Walkup, “Optical techniques for real time binary multiplication,” Appl. Opt. 25, 2272–2276 (1986). [CrossRef] [PubMed]
  14. E. Marom, B. H. Soffer, U. Efron, “Pixel-by-pixel array division by optical computing,” Opt. Lett. 10, 43–45 (1985). [CrossRef] [PubMed]
  15. J. N. Mait, K. H. Brenner, “Optical symbolic substitution: system design using phase-only holograms,” Appl. Opt. 27, 1692–1700 (1988). [CrossRef] [PubMed]
  16. H. I. Jeon, M. A. G. Alexander, A. A. Sawchuk, B. K. Jenkins, “Digital optical processor based on symbolic substitution using holographic matched filtering,” Appl. Opt. 29, 2113–2125 (1990). [CrossRef] [PubMed]
  17. J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, J. H. English, “GaAl-AlAs monolithic microresonator arrays,” in Optics and the Information Age: 14th Congress of the lnternational Commission for Optics, H. H. Arsenault, ed., Proc. Soc. Photo Opt. Instrum. Eng.813, 3–4 (1987).
  18. A. Huang, Y. Tsunoda, J. W. Goodman, S. Ishihara, “Optical computation using residue arithmetic,” Appl. Opt. 18, 149–162 (1979). [CrossRef] [PubMed]
  19. B. L. Drake, R. P. Bocker, M. E. Lasher, R. H. Patterson, W. J. Miceli, “Photonic computing using the modified-signed-digit number representation,” Opt. Eng. 25, 38–44 (1986).
  20. B. Arazi, “An electrooptical adder,” Proc. IEEE 73, 162–163, (1985). [CrossRef]
  21. J. B. McManus, S. Putnam, “Construction of an optical carry adder,” Appl. Opt. 26, 1557–1562 (1987). [CrossRef] [PubMed]
  22. A. Korpel, A. W. Lohmann, “Polarization and optical bistability,” Appl. Opt. 25, 1528–1529 (1986). [CrossRef] [PubMed]
  23. A. Korpel, A. W. Lohmann, “Criteria for optical bistability in ring cavities with two orthogonal modes of polarization,” Appl. Opt. 25, 2253–2257 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited