OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 31, Iss. 18 — Jun. 20, 1992
  • pp: 3409–3415

Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser

Neil Goldstein, Steven Adler-Golden, Jamine Lee, and Fritz Bien  »View Author Affiliations

Applied Optics, Vol. 31, Issue 18, pp. 3409-3415 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (948 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The technique of line-locked wavelength modulation with 2f detection is applied to the measurement of water vapor concentration and absorption line parameters by using an 820-nm AlGaAs communications diode laser. Measurements of the 2f signal as a function of the modulation amplitude yield accurate concentrations and line parameters over a pressure range of an order of magnitude and half-widths from 0.02 to 0.15 cm−1. Using two different spectral lines, we determined concentrations and line parameters with 1% precision, and the absolute accuracy of the line parameters is 3% or better. The results have been used to calculate calibration curves for a diode laser humidity monitor.

© 1992 Optical Society of America

Original Manuscript: May 31, 1991
Published: June 20, 1992

Neil Goldstein, Steven Adler-Golden, Jamine Lee, and Fritz Bien, "Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser," Appl. Opt. 31, 3409-3415 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Lenth, M. Gehrtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAIAs diode laser,” Appl. Phys. Lett. 47, 1263–1265 (1985). [CrossRef]
  2. D. E. Cooper, R. E. Warren, “Frequency modulation spectroscopy with lead–salt diode lasers: a comparison of single-tone and two-tone techniques,” Appl. Opt. 26, 3726–3737 (1987). [CrossRef] [PubMed]
  3. A. C. Stanton, J. A. Silver, “Measurements in the HCl 3 ← 0 band using a near-IR InGaAsP diode laser,” Appl. Opt. 27, 5009–5015 (1988). [CrossRef] [PubMed]
  4. L.-G. Wang, H. Riris, C. B. Carlisle, T. F. Gallagher, “Comparison of approaches to modulation spectroscopy with GaAlAs semiconductor lasers: application of water vapor,” Appl. Opt. 27, 2071–2077 (1988). [CrossRef] [PubMed]
  5. C. B. Carlisle, D. E. Cooper, “Tunable-diode-laser frequency-modulation spectroscopy using balanced homodyne detection,” Opt. Lett. 14, 1306–1308 (1989). [CrossRef] [PubMed]
  6. D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short external cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1332 (1990). [CrossRef] [PubMed]
  7. R. D. May, C. R. Webster, “Balloon-borne laser spectrometer measurements of NO2 with gas absorption sensitivities below 10−5,” Appl. Opt. 29, 5042–5044 (1990). [CrossRef] [PubMed]
  8. T. J. Johnson, F. G. Weinhold, J. P. Burrows, G. W. Harris, “Frequency modulation spectroscopy at 1.3 μm using InGaAsP lasers: a prototype field instrument for atmospheric chemistry research,” Appl. Opt. 30, 407–413 (1991). [CrossRef] [PubMed]
  9. V. Pevtschin, S. Ezekiel, “Investigation of the absolute stability of water-vapor-stabilized semiconductor laser,” Opt. Lett. 12, 172–174 (1987). [CrossRef] [PubMed]
  10. M. Loewenstein, “Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules,” J. Quant. Spectrosc. Radiat. Transfer 40, 249–256 (1988). [CrossRef]
  11. J. Reid, D. Labrie, “Second harmonic detection with tuneable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  12. J. Humlicek, “An efficient method for evaluation of the complex probability function: the Voigt functions and its derivatives,” J. Quant. Spectrosc. Radiat. Transfer 21, 309–313 (1979). [CrossRef]
  13. B. E. Grossmann, E. V. Browell, “Spectroscopy of water vapor in the 720–nm wavelength region: line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts,” J. Mol. Spectrosc. 136, 264–294 (1989); “Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region,” 138, 562–595 (1989). [CrossRef]
  14. C. Delaye, J.-M. Hartmann, J. Taine, “Calculated tabulations of H2O line broadening by H2O, N2, O2, and CO2 at high temperature,” Appl. Opt. 28, 5080–5087 (1989). [CrossRef] [PubMed]
  15. HITRAN database, 1991 ed. (National Climatic Center, National Oceanic and Atmospheric Administration, Digital Product Section, Federal Building, Asheville, N.C. 28801).
  16. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. CamyPeyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987). [CrossRef] [PubMed]
  17. R. A. Toth, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, Calif. 91109 (personal communication, 1990).
  18. N. Goldstein, F. Bien, M. E. Gersh, J. Lee, M. R. Zakin, “Multipoint fiberoptic humidity monitor,” Drying Technol. 9, 833–844 (1991). [CrossRef]
  19. S. Adler-Golden, J. Lee, N. Goldstein, “Diode laser measurements of temperature-dependent line parameters for water vapor near 820 nm,” J. Quant. Spectrosc. Radiat. Transfer (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited