OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 19 — Jul. 1, 1992
  • pp: 3730–3735

Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer

Andreas W. Dreher, Klaus Reiter, and Robert N. Weinreb  »View Author Affiliations


Applied Optics, Vol. 31, Issue 19, pp. 3730-3735 (1992)
http://dx.doi.org/10.1364/AO.31.003730


View Full Text Article

Enhanced HTML    Acrobat PDF (882 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A retinal laser ellipsometer has been developed by coupling a Fourier ellipsometer to a laser scanning system. The instrument has been used to assess the origin and the amount of change in the state of polarization of a laser beam that has double passed the retina around the optic nerve head of postmortem human eyes. Eight eyes with no history of glaucoma were studied. At 200 points around the optic nerve head of each eye the Mueller matrices of the retina were examined for the amount of retardation, the orientation of the optic axis, and the amount of dichroism. The degree of polarization preservation of the detected light varied between 50% and 87%. Little dichroism was found, and there was no obvious correlation to the physical arrangement of any retinal structure. However, there was a substantial amount of linear uniaxial birefringence with the optic axis perpendicular to the incident laser beam. Furthermore the calculated optic axis direction showed a strong correlation with the physical orientation of the radial symmetrically arranged retinal nerve fiber axons around the optic nerve head. The local distribution of the corresponding retardation values showed two maxima that coincided with the areas of the thickest retinal nerve fiber layer. These results support the hypothesis that the thickness of the form birefringent retinal nerve fiber layer can be assessed by ellipsometric methods.

© 1992 Optical Society of America

History
Original Manuscript: June 18, 1991
Published: July 1, 1992

Citation
Andreas W. Dreher, Klaus Reiter, and Robert N. Weinreb, "Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer," Appl. Opt. 31, 3730-3735 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-19-3730


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Webb, G. W. Hughes, F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26, 1492–1499 (1987). [CrossRef] [PubMed]
  2. M. B. Shields, J. F. Martone, A. R. Ollie, J. F. Martone, J. McMillian, “Reproducibility of topographic measurements with the optic nerve head analyzer,” Am. J. Ophthalmol. 104, 581–586 (1987). [PubMed]
  3. R. N. Weinreb, M. R. Nelson, M. H. Goldbaum, S. I. Brown, B. Katz, “Digital image analysis of optic disc topography,” in Acta XXV Concilium Ophthalmologicum, F. Blodi, R. Brancato, G. Cristini, eds. (Kugler, Berkeley, Calif., 1988), pp. 216–221.
  4. R. N. Weinreb, A. W. Dreher, J. Bille, “Quantitative assessment of the optic nerve head with the laser tomographic scanner,” Int. J. Ophthalmol. 13, 125–129 (1989).
  5. F. W. Campbell, R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. (London) 186, 558 (1966).
  6. J. Caprioli, U. Klingbeil, M. Sears, B. Pope, “Reproducibility of optic disc measurements with computerized analysis of stereoscopic video images,” Arch. Ophthalmol. 106, 1035–1039 (1986). [CrossRef]
  7. L. Dandona, H. A. Quigley, H. D. Jampel, “Variability of depth measurements of the optic nerve head and peripapillary retina with computerized image analysis,” Arch. Ophthalmol. 107, 1786–1792 (1989). [CrossRef] [PubMed]
  8. A. W. Dreher, P. C. Tso, R. N. Weinreb, “Reproducibility of topographic measurements of the normal and glaucomatous optic nerve head with the laser tomographic scanner,” Am. J. Ophthalmol. 111, 221–229 (1991). [PubMed]
  9. A. W. Dreher, J. F. Bille, R. N. Weinreb, “Active-optical depth resolution improvement of the laser tomographic scanner,” Appl. Opt. 28, 804–808 (1987). [CrossRef]
  10. R. A. Bone, “The role of the macular pigment in the detection of polarized light,” Vision Res. 20, 213–219 (1980). [CrossRef] [PubMed]
  11. B. F. Hochheimer, H. A. Kues, “Retinal polarization effects,” Appl. Opt. 21, 3811–3818 (1982). [CrossRef] [PubMed]
  12. F. C. Delori, R. H. Webb, J. S. Parker, “Macular birefringence,” Invest. Ophthalmol. Vis. Sci. Suppl. 19, 53 (1979).
  13. H. B. klein Brink, G. J. van Blokland, “Birefringence of the human foveal area assessed in vivo with Müller-matrix ellipsometry,” J. Opt. Soc. Am. A 5, 49–57 (1988). [CrossRef]
  14. A. W. Dreher, K. Reiter, J. Bille, “Assessment of nerve fiber layer thickness with the LTS laser tomographic scanner,” Invest. Ophthalmol. Vis. Sci. Suppl. 29, 355 (1988).
  15. A. W. Dreher, K. Reiter, “Nerve fiber layer assessment with a retinal laser ellipsometer,” in Noninvasive Assessment of the Visual System, Vol. 1 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 154–157.
  16. O. Wiener, “Die Theorie des Mischkörpers für das Feld der Stationären Strömung,” Abh. Sächs. Ges. Akad. Wiss. Math. Phys. Kl. No. 6 32, 507–604 (1912).
  17. R. P. Hemenger, “Birefringence of a medium of tenuous parallel cylinders,” Appl. Opt. 28, 4030–4034 (1989). [CrossRef] [PubMed]
  18. W. R. Knighton, S. C. Jacobson, M. K. Kemp, “The spectral reflectance of the nerve fiber layer of the macaque retina,” Invest. Ophthalmol. Vis. Sci. 30, 2393–2402 (1989).
  19. W. A. Shurcliff, Polarized Light (Harvard U. Press, Cambridge, Mass., 1962), pp. 165–171.
  20. P. S. Hauge, “Müller matrix ellipsometry with imperfect compensators,” J. Opt. Soc. Am. A 68, 1519–1528 (1978). [CrossRef]
  21. R. M. A. Azzam, “Photopolarimetric measurement of the Müller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2, 148–150 (1978). [CrossRef] [PubMed]
  22. A. Gullstrand, “The optical system of the eye,” in Helmholtz’s Treatise on Physiological Optics, J. P. C. Southall, ed. (Optical Society of America, Rochester, N.Y., 1924), Vol. 1, pp. 350–358.
  23. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1987), pp. 31–32.
  24. K. Reiter, A. W. Dreher, R. N. Weinreb, “Accuracy and reproducibility of a retinal laser ellipsometer,” Invest. Ophthalmol. Vis. Sci. Suppl. 32, 812 (1991).
  25. R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Opthalmol. 108, 557–560 (1990). [CrossRef]
  26. R. L. Radius, “Anatomy and pathophysiology of the retina and optic nerve,” in The Glaucomas, R. Ritch, M. B. Shields, T. Krupin, eds. (Mosby, St. Louis, Mo., 1989), p. 95.
  27. A. W. Dreher, K. Reiter, R. N. Weinreb, “Measurement of the circumpapillary nerve fiber layer distribution by polarimetry,” Invest. Ophthalmol. Vis. Sci. Suppl. 32, 811 (1991).
  28. G. J. van Blokland, S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4, 82–90 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited