OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 19 — Jul. 1, 1992
  • pp: 3821–3835

Deposition error compensation for optical multilayer coatings. I. Theoretical description

Brian T. Sullivan and J. A. Dobrowolski  »View Author Affiliations


Applied Optics, Vol. 31, Issue 19, pp. 3821-3835 (1992)
http://dx.doi.org/10.1364/AO.31.003821


View Full Text Article

Enhanced HTML    Acrobat PDF (2203 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The manufacture of complicated optical coatings consisting of many layers of different thicknesses can be a challenge, especially if the deposition technique does not produce dense layers. Deposition errors in a layer can affect not only the desired performance of a multilayer, but can also lead to a complete breakdown of the monitoring and control of subsequent layers. The best chance to achieve the desired optical performance of a multilayer involves deposition error compensation. In this process, the construction parameters of a completed layer are evaluated to determine if any deposition errors have occurred and then the remaining layers of the multilayer system are reoptimized to compensate for any errors made. This paper describes a versatile deposition error compensation program developed at the National Research Council of Canada for the simulation and real-time control of the manufacture of multilayers composed of dielectric or absorbing films. To model porous layers, an effective medium theory approach is used to relate the optical constants of the layer in vacuum and air to the microstructure of the layer. In the simulation mode, random errors are applied to the thickness and porosity of the layers and measurement errors are also included. The best monitoring strategy for the manufacture of a given multilayer is established on the basis of statistical information obtained from a number of these simulations. In this paper the results of calculations on the effectiveness of various monitoring strategies are presented for a sharp edge filter produced by three different physical vapor deposition methods. An extensive list of references to previous papers dealing with sources of errors during deposition is also provided.

© 1992 Optical Society of America

History
Original Manuscript: February 21, 1991
Published: July 1, 1992

Citation
Brian T. Sullivan and J. A. Dobrowolski, "Deposition error compensation for optical multilayer coatings. I. Theoretical description," Appl. Opt. 31, 3821-3835 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-19-3821

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited