OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 31, Iss. 2 — Jan. 10, 1992
  • pp: 255–262

Three-dimensional lensless imaging using laser frequency diversity

Joseph C. Marron and Kirk S. Schroeder  »View Author Affiliations

Applied Optics, Vol. 31, Issue 2, pp. 255-262 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (1847 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A laser radar system for three-dimensional (3-D) lensless imaging is analyzed in theory and experiment. 3-D imaging is accomplished by making use of the relationship between the angular and wavelength dependence of the scattered light and an object’s 3-D Fourier transform. The concept is demonstrated by obtaining a 3-D image of an extended object by using a charge-coupled device detector array and an argon-ion laser with a tunable intracavity étalon.

© 1992 Optical Society of America

Original Manuscript: July 26, 1990
Published: January 10, 1992

Joseph C. Marron and Kirk S. Schroeder, "Three-dimensional lensless imaging using laser frequency diversity," Appl. Opt. 31, 255-262 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968).
  2. D. R. Wehner, High Resolution Radar (Artech House, Norwood, Mass., 1987).
  3. J. W. Walker, “Range-Doppler imaging of rotating objects,” IEEE Trans. Aerosp. Electron. Syst. AES-16, 23–52 (1980). [CrossRef]
  4. D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, E. C. Poggio, “Developments in radar imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 363–400 (1984). [CrossRef]
  5. F. K. Knight, D. I. Klick, D. P. Ryan-Howard, J. R. Theriault, B. K. Tussey, A. M. Beckman, “Three-dimensional imaging using a single laser pulse,” in Laser Radar IV, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1103, 174–189 (1989).
  6. C. C. Aleksoff, “Interferometric two-dimensional imaging of rotating objects,” Opt. Lett. 1, 54–55 (1977). [CrossRef] [PubMed]
  7. C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klooster, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds. Proc. Soc. Photo-Opt. Instrum. Eng.783, 29–41 (1987).
  8. M. Bair, R. Sampson, D. Zuk, “Three-dimensional imaging and applications,” in Intelligent Robots and Computer Vision, D. P. Casasent, ed., Proc. Soc. Photo-Opt. Instrum. Eng.726, 263–274 (1986).
  9. N. H. Farhat, “Holography, wavelength diversity and inverse scattering,” in Optics in Four Dimensions—1980, M. A. Machado, L. M. Narducci, eds. (American Institute of Physics, New York, 1981).
  10. R. M. Lewis, “Physical optics inverse diffraction,” IEEE Trans. Antennas Propag. AP-17, 308–314 (1969). [CrossRef]
  11. C. K. Chan, N. H. Farhat, “Frequency swept tomographic imaging of three-dimensional perfectly conducting objects,” IEEE Trans. Antennas Propag. AP-29, 312–319 (1981). [CrossRef]
  12. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2709 (1982). [CrossRef] [PubMed]
  13. R. G. Paxman, “Superresolution with an opacity constraint,” in Digest of Topical Meeting on Signal Recovery and Synthesis III, Vol. 15 of OSA 1989 Technical Digest Series (Optical Society of America, Washington, D.C., 1989), pp. 181–184.
  14. O. Svelto, Principles of Lasers (Plenum, New York, 1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited