OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 23 — Aug. 10, 1992
  • pp: 4773–4801

Tutorial survey of composite filter designs for optical correlators

B. V. K. Vijaya Kumar  »View Author Affiliations


Applied Optics, Vol. 31, Issue 23, pp. 4773-4801 (1992)
http://dx.doi.org/10.1364/AO.31.004773


View Full Text Article

Enhanced HTML    Acrobat PDF (4173 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A tutorial survey is presented of the many composite filter designs proposed for distortion-invariant optical pattern recognition. Remarks are made throughout regarding areas for further investigation.

© 1992 Optical Society of America

History
Original Manuscript: January 28, 1991
Published: August 10, 1992

Citation
B. V. K. Vijaya Kumar, "Tutorial survey of composite filter designs for optical correlators," Appl. Opt. 31, 4773-4801 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-23-4773


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. O. North, “An analysis of the factors which determine signal/noise discriminations in pulsed carrier systems,” Proc. IEEE 51, 1016–1027 (1963). [CrossRef]
  2. J. L. Horner, P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23, 812–816 (1984). [CrossRef] [PubMed]
  3. D. Psaltis, E. G. Paek, S. S. Venkatesh, “Optical image correlation with binary spatial light modulator,” Opt. Eng. 23, 698–704 (1984).
  4. D. L. Flannery, J. L. Horner, “Fourier optical processors,” Proc. IEEE 77, 1511–1527 (1989). [CrossRef]
  5. C. F. Hester, D. Casasent, “Multivariant technique for multiclass pattern recognition.” Appl. Opt. 19, 1758–1761 (1980). [CrossRef] [PubMed]
  6. R. R. Kallman, “The construction of low noise optical correlation filters,” Appl. Opt. 25, 1032–1033 (1986). [CrossRef] [PubMed]
  7. Y. N. Hsu, H. H. Arsenault, “Optical characteter recognition using circular harmonic expansion,” Appl. Opt. 21, 4016–4019 (1982). [CrossRef] [PubMed]
  8. G. F. Schils, D. W. Sweeney, “Optical processor for recognition of three-dimensional targets viewed from any direction,” J. Opt. Soc. Am. A 5, 1309–1321 (1988). [CrossRef]
  9. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theor. 10, 139–145 (1964). [CrossRef]
  10. H. J. Caulfield, W. T. Maloney, “Improved discrimination in optical character recognition,” Appl. Opt. 8, 2354–2356 (1969). [CrossRef] [PubMed]
  11. B. Braunecker, R. W. Hauck, A. W. Lohmann, “Optical character recognition based on nonredundant correlation measurements,” Appl. Opt. 18, 2746–2753 (1979). [CrossRef] [PubMed]
  12. B. V. K. Vijaya Kumar, “Minimum variance synthetic discriminant functions,” J. Opt. Soc. Am. A 3, 1579–1584 (1986). [CrossRef]
  13. A. Mahalanobis, B. V. K. Vijaya Kumar, D. Casasent, “Minimum average correlation energy filters,” Appl. Opt. 26, 3633–3640 (1987). [CrossRef] [PubMed]
  14. L. Hassebrook, B. V. K. Vijaya Kumar, L. Hostetler, “Linear phase coefficient composite filter banks for distortion-invariant optical pattern recognition,” Opt. Eng. 29, 1033–1043 (1990). [CrossRef]
  15. J. R. Leger, S. H. Lee, “Hybrid optical processor for pattern recognition and classification using a generalized set of pattern functions,” Appl. Opt. 21, 274–287 (1982). [CrossRef] [PubMed]
  16. J. R. Leger, S. H. Lee, “Image classification by an optical implementation of Fukunaga–Koontz transform,” J. Opt. Soc. Am. 72, 556–564 (1982). [CrossRef]
  17. Z. H. Gu, J. R. Leger, S. H. Lee, “Optical implementation of the least-squares linear mapping technique for image classification,” J. Opt. Soc. Am. 72, 787–793 (1982). [CrossRef]
  18. Z. H. Gu, S. H. Lee, “Optical implementation of the Hotelling trace criterion for image classification,” Opt. Eng. 23, 727–731 (1984).
  19. Z. H. Gu, S. H. Lee, “Classification of multiclassed stochastic images buried in additive noise,” J. Opt. Soc. Am. A 4, 712–719 (1987). [CrossRef]
  20. J. L. Horner, P. D. Gianino, “Applying the phase-only filter concept to synthetic discriminant function correlation filter,” Appl. Opt. 24, 851–855 (1985). [CrossRef] [PubMed]
  21. D. Casasent, W. Rozzi, “Computer generated and phase-only synthetic discriminant function filters,” Appl. Opt. 25, 3767–3772 (1986). [CrossRef] [PubMed]
  22. D. Jared, D. Ennis, “Inclusion of filter modulation in synthetic discriminant function construction,” Appl. Opt. 28, 232–239 (1989). [CrossRef] [PubMed]
  23. M. B. Reid, P. W. Ma, J. D. Downie, E. Ochoa, “Experimental verification of modified synthetic discriminant function filters for rotation invariance,” Appl. Opt. 29, 1209–1214 (1990). [CrossRef] [PubMed]
  24. Z. Bahri, B. V. K. Vijaya Kumar, “Algorithms for designing phase-only synthetic discriminant functions,” in Optical Information Processing Systems and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 138–147 (1989).
  25. Z. Bahri, B. V. K. ViJaya Kumar, “Generalized synthetic discriminant functions,” J. Opt. Soc. Am. A 5, 562–571 (1988). [CrossRef]
  26. R. R. Kallman, “Direct construction of phase-only filters,” Appl. Opt. 26, 5200–5201 (1987). [CrossRef] [PubMed]
  27. B. V. K. Vijaya Kumar, Z. Bahri, A. Mahalanobis, “Constraint phase optimization in minimum variance synthetic discriminant functions,” Appl. Opt. 27, 409–413 (1988). [CrossRef]
  28. S. I. Sudharsanan, A. Mahalanobis, M. K. Sundareshan, “Selection of optimum output correlation values in synthetic discriminant function design,” J. Opt. Soc. Am. A 7, 611–616 (1990). [CrossRef]
  29. Ph. Refregier, J. P. Huignard, “Phase selection of synthetic discriminant function filters,” Appl. Opt. 29, 4772–4778 (1990). [CrossRef] [PubMed]
  30. M. Fleisher, U. Mahlab, J. Shamir, “Entropy optimized filter for pattern recognition,” Appl. Opt. 29, 2091–2098 (1990). [CrossRef] [PubMed]
  31. U. Mahlab, J. Shamir, H. J. Caulfield, “Genetic algorithm for optical pattern recognition,” Opt. Lett. 16, 648–650 (1991). [CrossRef] [PubMed]
  32. J. Rosen, J. Shamir, “Application of the projection-onto-constraint-sets algorithm for optical pattern recognition,” Opt. Lett. 16, 752–754 (1991). [CrossRef] [PubMed]
  33. M. S. Kim, M. R. Feldman, C. C. Guest, “Optimum encoding of binary phase only filters with a simulated annealing algorithm,” Opt. Lett. 14, 545–547 (1989). [CrossRef] [PubMed]
  34. G. Zalman, J. Shamir, “Maximum discrimination filter,” J. Opt. Soc. Am. A 8, 814–821 (1991). [CrossRef]
  35. T. Walsh, M. Giles, “Statistical filtering of time-sequenced peak correlation responses for distortion-invariant recognition of multiple input objects,” Opt. Eng. 29, 1052–1064 (1990). [CrossRef]
  36. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, Now York, 1968).
  37. C. S. Weaver, J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966) [CrossRef] [PubMed]
  38. F. T. S. Yu, Optical Information Processing (Wiley, New York, 1983).
  39. M. L. James, G. M. Smith, J. C. Wolford, Applied Numerical Methods for Digital Computation (Harper & Row, New York, 1985).
  40. J. Riggins, S. Butler, “Simulation of synthetic discriminant function optical implementation,” Opt. Eng. 23, 721–726 (1984).
  41. G. A. Korn, T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1968).
  42. B. V. K. Vijaya Kumar, E. Pochapsky, “Signal-to-noise ratio considerations in modified matched spatial filters,” J. Opt. Soc. Am. A 3, 777–786 (1986). [CrossRef]
  43. K. S. Shanmugan, A. M. Breipohl, Random Signals: Detection, Estimation and Data Analysis (Wiley, New York, 1988).
  44. H. Mostafavi, F. Smith, “Image correlation with geometric distortion—Part I: acquisition performance,” IEEE Trans. Aerosp. Electron. Sys. AES-14, 487–493 (1978). [CrossRef]
  45. T. M. Caelli, Z. Q. Liu, “On the minimum number of templates required for shift, rotation and size invariant pattern recognition” Patt. Recog. 21, 205–216 (1988). [CrossRef]
  46. L. Hassebrook, B. V. K. Vijaya Kumar, L. Hostetler, “Linear phase coefficient composite filters for optical pattern recognition,” in Optical Pattern Recognition, H. Liu, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1053, 218–226 (1989).
  47. G. W. Stewart, Introduction to Matrix Computations (Academic, New York, 1973).
  48. S. Liebowiwtz, “Optical range image processing for object recognition,” Ph.D. dissertation (Carnegie Mellon University, Pittsburgh, Pa, 1989).
  49. B. V. K. Vijaya Kumar, “Efficient approach for designing linear combination filters,” Appl. Opt. 22, 1445–1448 (1983). [CrossRef]
  50. D. Casasent, W. T. Chang, “Correlation synthetic discriminant functions,” Appl. Opt. 25, 2343–2350 (1986). [CrossRef] [PubMed]
  51. D. Casasent, “Unified synthetic discriminant function computation formulation” Appl. Opt. 23, 1620–1627 (1984). [CrossRef] [PubMed]
  52. Z. Bahri, “Some generalizations of synthetic discriminant functions,” M.S. thesis (Carnegie Mellon University, Pittsburgh, Pa., 1986).
  53. D. Casasent, “Computer generated holograms for pattern recognition: a review,” Opt. Eng. 23, 1620–1627 (1984).
  54. H. Fujii, S. P. Almeida, “Coherent spatial filtering with simulated input,” Appl. Opt. 18, 1659–1662 (1979). [CrossRef] [PubMed]
  55. H. H. Arsenault, Y. Sheng, J. Bulabois, “Modified composite filter for pattern recognition in the presence of noise with non-zero mean,” Opt. Commun. 63, 15–20 (1987). [CrossRef]
  56. B. V. K. Vijaya Kumar, D. Casasent, A. Mahalanobis, “Correlation filters for target in a Markov model background clutter,” Appl. Opt. 28, 3112–3119 (1989). [CrossRef]
  57. N. Ben-Yosef, K. Wilner, S. Simhony, G. Feigin, “Measurement and analysis of 2-D infrared natural background,” Appl. Opt. 24, 2109–2113 (1985). [CrossRef] [PubMed]
  58. H. H. Arsenault, “Rotation invariant composite filters,” in Nonlinear Optics and Applications, P. A. Yeh, ed., Proc. Soc. Photo-Opt. Instrum. Eng.613, 239–244 (1986).
  59. D. Casasent, G. Ravichandran, “Advanced distortion-invariant MACE filters,” Appl. Opt. 31, 1109–1116 (1992). [CrossRef] [PubMed]
  60. D. Casasent, G. Ravichandran, S. Bollapraggada, “Gaussian MACE correlation filters,” Appl. Opt. 30, 5176–5181 (1991). [CrossRef] [PubMed]
  61. J. Campos, H. H. Arsenault, “Optimum sidelobe-reducing invariant matched filters for pattern recognition,” in Optical Computing ’88, P. Chavel, J. W. Goodman, G. Robin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, 298–303 (1988). [CrossRef]
  62. D. Casasent, A. Iyer, G. Ravichandran, “Circular harmonic function MACE filters,” Appl. Opt. 30, 5169–5175 (1991). [CrossRef] [PubMed]
  63. G. Ravichandran, D. Casasent, “Generalized in-plane rotation-invariant minimum average correlation energy filter,” Opt. Eng. 30, 1601–1607 (1991). [CrossRef]
  64. Ph. Refregier, “Filter design for optical pattern recognition: multicriteria optimization approach,” Opt. Lett. 15, 854–856 (1990). [CrossRef] [PubMed]
  65. B. V. K. Vijaya Kumar, A. Mahalanobis, S. Song, S. R. F. Sims, J. Epperson, “Minimum squared error synthetic discriminant functions,” Opt. Eng. (to be published).
  66. S. R. F. Sims, J. A. Mills, “Synthetic discriminant function (SDF) filter performance evaluations,” in Hybrid Image and Signal Processing II, D. P. Casasent, A. G. Tescher, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1297, 110–121 (1990).
  67. S. I. Sudharsanan, A. Mahalanobis, M. K. Sundareshan, “A unified framework for the synthesis of synthetic discriminant functions with reduced noise variance and sharp correlation structure,” Opt. Eng. 29, 1021–1028 (1990). [CrossRef]
  68. P. A. Molley, K. T. Stalker, “Acousto-optic signal processing for real-time image recognition,” Opt. Eng. 29, 1073–1080 (1990). [CrossRef]
  69. M. Wax, T. Kailath, “Efficient inversion of Toeplitz-block Toeplitz matrix,” IEEE Trans. Acoust. Speech Signal Process. ASSP-31, 1218–1221 (1983). [CrossRef]
  70. N. Kalouptsidis, G. Carayannis, D. Manolakis, “On block matrices with elements of special structure,” in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1982), pp. 1744–1747.
  71. D. Psaltis, “Two-dimensional optical processing using one-dimensional input devices,” Proc. IEEE 72, 962–974 (1984). [CrossRef]
  72. J. M. Connelly, “Designing filters for an acousto-optic based two-dimensional correlator,” Ph.D. dissertation (Carnegie Mellon University, Pittsburgh, Pa., 1990).
  73. B. V. K. Vijaya Kumar, L. Hassebrook, “Performance measures for correlation filters,” Appl. Opt. 29, 2997–3006 (1990). [CrossRef]
  74. J. Brasher, C. F. Hester, D. W. Lawson, S. R. F. Sims, “Multi-state higher-order filters,” in Hybrid Image and Signal Processing II, D. P. Casasent, A. G. Tescher, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1297, 103–109 (1990).
  75. G. Ravichandran, D. Casasent, “Minimum noise and correlation energy (MINACE) optical correlation filter,” Appl. Opt. 31, 1823–1833 (1992). [CrossRef] [PubMed]
  76. Standard nonlinear optimization packages are available at the International Mathematical and Statistical Library, 2500 City West Blvd., Houston, Tex., 77042–3026.
  77. K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed. (Academic, New York, 1990).
  78. M. D. Srinath, P. K. Rajasekaran, An Introduction to Statistical Signal Processing with Applications (Wiley, New York, 1979).
  79. J. G. Proakis, Digital Communications (McGraw-Hill, New York, 1983).
  80. R. R. Kallman, “Optimal low noise phase-only and binary phase-only optical correlation filters for threshold detectors,” Appl. Opt. 25, 4216–4217 (1986). [CrossRef] [PubMed]
  81. R. R. Kallman, “Two variants of the optical correlation process,” in Digital and Optical Shape Representation and Pattern Recognition, R. D. Juday, ed., Proc. Soc. Photo-Opt. Instrum. Eng.938, 40–47 (1988).
  82. J. M. Florence, “Design considerations for phase-only correlation filters,” in Optical Information Processing Systems and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 195–202 (1989).
  83. H. H. Arsenault, C. Ferreira, M. P. Levesque, T. Szpolik, “Simple filter with limited rotation invariance,” Appl. Opt. 25, 3230–3234 (1986). [CrossRef] [PubMed]
  84. R. Wu, H. Stark, “Rotation-invariant pattern recognition using a vector reference,” Appl. Opt. 23, 838–840 (1984). [CrossRef] [PubMed]
  85. Y. N. Hsu, H. H. Arsenault, “Pattern discrimination by multiple circular harmonic components,” Appl. Opt. 23, 841–844 (1984). [CrossRef] [PubMed]
  86. L. Leclerc, Y. Sheng, H. H. Arsenault, “Rotation invariant phase-only and binary phase-only correlation,” Appl. Opt. 28, 1251–56 (1989). [CrossRef] [PubMed]
  87. Y. Sheng, H. H. Arsenault, “Method for determining expansion centers and predicting sidelobe levels for circular-harmonic filter,” J. Opt. Soc. Am. A 4, 1793–1797 (1987). [CrossRef]
  88. Ph. Refregier, “Optical pattern recognition: optimal trade-off circular harmonic filters,” Opt. Commun. (to be published).
  89. Y. Sheng, H. H. Arsenault, “Object detection from a real scene using the correlation peak coordinates of multiple circular harmonic filters,” Appl. Opt. 28, 245–249 (1989). [CrossRef] [PubMed]
  90. J. Rosen, J. Shamir, “Circular harmonic phase filters for efficient rotation-invariant pattern recognition,” Appl. Opt. 27, 2895–2899 (1988). [CrossRef] [PubMed]
  91. A. Mahalanobis, B. V. K. Vijaya Kumar, D. Casasent, “Spatial-temporal correlation filter for inplane distortion invariance,” Appl. Opt. 25, 4466–4472 (1986). [CrossRef] [PubMed]
  92. H. F. Yau, C. C. Chang, “Phase-only circular harmonic matched filtering,” Appl. Opt. 28, 2070–2074 (1989). [CrossRef] [PubMed]
  93. K. H. Fielding, S. K. Rogers, M. Kabrisky, J. P. Mills, “Position, scale and rotation invariant halographic associative memory,” Opt. Eng. 28, 849–853 (1989).
  94. K. Mersereau, G. M. Morris, “Scale, rotation and shift invariant image recognition,” Appl. Opt. 25, 2338–2342 (1986). [CrossRef] [PubMed]
  95. R. D. Juday, “Synthetic estimation filters for a control system,” in Optical and Digital Pattern Recognition, H. Liu, P. S. Schenker, eds., Proc. Soc. Photo-Opt. Instrum. Eng.754, 40–47 (1987).
  96. S. E. Monroe, R. D. Juday, “Multidimensional synthetic estimation filters,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1347, 179–185 (1990).
  97. S. E. Monroe, R. D. Juday, J. M. Florence, “Laboratory results using the synthetic estimation filter, in Aerospace Pattern Recognition, M. R. Weathersby, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1098, 190–197 (1989).
  98. G. F. Schils, D. W. Sweeney, “Iterative technique for the synthesis of optical-correlation filters,” J. Opt. Soc. Am. A 3, 1433–1442 (1986). [CrossRef]
  99. D. W. Sweeney, E. Ochoa, G. F. Schils, “Experimental use of iteratively designed rotation invariant correlation filters,” Appl. Opt. 26, 3485–3465 (1987). [CrossRef]
  100. B. V. K. Vijaya Kumar, A. Lee, J. M. Connelly, “Estimating object rotation and scale using correlation filters,” Opt. Eng. 28, 474–481 (1989).
  101. R. W. Gerchberg, W. O. Saxton, “Phase determination from image and diffraction plane pictures in the electron microscope,” Optik (Stuttgart) 34, 2758 (1982).
  102. G. Gheen, “Maximum mean square projection filters,” in Optical Information Processing Systems and Architectures, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1151, 278–283 (1989).
  103. D. Jared, D. Ennis, “Learned distortion-invariant pattern recognition using synthetic discriminant functions,” in Hybrid Image Processing, D. P. Casasent, A. G. Tescher, eds., Proc. Soc. Photo-Opt. Instrum. Eng.638, 91–101 (1986).
  104. J. K. Mui, K. S. Fu, “Automated classification of nucleated blood cells using a binary tree classifier,” IEEE Trans. Pattern Anal. Mach. Intell. 2, 429–443 (1980).
  105. D. Casasent, A. Mahalanobis, “Rule-based symbolic processor for object recognition,” Appl. Opt. 26, 4795–4802 (1987). [CrossRef] [PubMed]
  106. S. Lin, D. J. Costello, Error Control Coding Fundamentals and Applications (Prentice-Hall, Englewood Cliffs, N.J., 1983).
  107. K. F. Cheung, L. E. Atlas, J. A. Ritcey, C. A. Green, R. J. Marks, “Conventional and composite matched filters with error correction: a comparison,” Appl. Opt. 26, 4235–4239 (1987). [CrossRef] [PubMed]
  108. S. Leibowitz, D. Casasent, “Error-correction coding in an associative processor,” Appl. Opt. 26, 999–1006 (1987). [CrossRef]
  109. H. Murakami, B. V. K. Vijaya Kumar, “Efficient calculation of primary images from a set of images,” IEEE Trans. Pattern Anal. Mach. Intell. 4, 511–515 (1982). [CrossRef] [PubMed]
  110. G. Gheen, “Optimal distortion invariant quadratic filters,” in Optical Information Processing Systems and Architectures III, B. Javidi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1564, 112–120 (1991).
  111. L. Hassebrook, “Design of distortion-invariant linear phase response filters and filter banks,” Ph.D. dissertation (Carnegie Mellon University, Pittsburgh, Pa, 1990).
  112. E. L. Jenkins, J. W. Morris, S. R. F. Sims, “Synthetic discriminant functions for target correlation,” in Infrared Image Processing and Enhancement, M. R. Weathersby, ed., Proc. Soc. Photo-Opt. Instrum. Eng.781, 140–147 (1987).
  113. R. D. Juday, “Optical correlation with a cross-coupled spatial light modulator,” in Optical Society of America 1988 Annual Meeting, Vol. 8 of OSA 1988 Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 238–241.
  114. M. W. Farn, J. W. Goodman, “Optimal maximum correlation filters for arbitrarily constrained devices,” Appl. Opt. 28, 3326–3366 (1989).
  115. R. D. Juday, “Correlation with a spatial light modulator having phase and amplitude cross coupling,” Appl. Opt. 28, 4865–4869 (1989). [CrossRef] [PubMed]
  116. W. L. Anderson, “Particle identification and counting,” in Applications of Optical Fourier Transform, H. Stark, ed. (Academic, New York, 1982), p. 95.
  117. R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965).
  118. D. L. Flannery, J. S. Loomis, M. E. Milkovich, “Transform-ratio ternary phase-amplitude formulation for improved correlation discrimination,” Appl. Opt. 27, 4079–4083 (1988). [CrossRef] [PubMed]
  119. S. Kirkpatrick, “Optimization by simulated annealing,” Science 220, 671–680 (1983). [CrossRef] [PubMed]
  120. J. Rosen, J. Shamir, “Distortion-invariant pattern recognition with phase filters,” Appl. Opt. 26, 2315–2319 (1987). [CrossRef] [PubMed]
  121. R. E. Blahut, Principles and Practice of Information Theory (Addison-Wesley, Reading, Mass., 1987).
  122. U. Mahlab, J. Shamir, “Phase-only entropy optimized filter generated by simulated annealing,” Opt. Lett. 14, 1168–1170 (1989). [CrossRef] [PubMed]
  123. D. C. Youla, H. Webb, “Image restoration by the method of convex projections: part I—theory,” IEEE Trans. Med. Imaging MI-1, 81–94 (1982). [CrossRef]
  124. R. D. Juday, B. J. Daiuto, “Relaxation method of compensation in an optical correlator,” Opt. Eng. 26, 1094–1101 (1987).
  125. U. Mahlab, J. Rosen, J. Shamir, “Iterative generation of holograms on spatial light modulator,” Opt. Lett. 15, 556–558 (1990). [CrossRef] [PubMed]
  126. G. Zalman, J. Shamir, “Reducing error probability in optical pattern recognition,” J. Opt. Soc. Am. A 8, 1866–1873 (1991). [CrossRef]
  127. J. L. Horner, “Light utilization in optical correlators,” Appl. Opt. 21, 4511–4514 (1982). [CrossRef] [PubMed]
  128. H. J. Caulfield, “Role of the Horner efficiency in the optimization of spatial filters for optical pattern recognition,” Appl. Opt. 21, 4391–4392 (1982). [CrossRef] [PubMed]
  129. Ph.Refregier Refregier, J. Figue, “Optimal trade-off filter for pattern recognition and their comparison with Wiener approach,” Opt. Comput. Process. 1, 3–10 (1991).
  130. D. A. Gregory, J. C. Kirsch, E. C. Tam, “Full complex modulation using liquid-crystal televisions,” Appl. Opt. 31, 163–165 (1992). [CrossRef] [PubMed]
  131. M. Flavin, J. L. Horner, “Amplitude encoded binary phase-only filter,” in Digital and Optical Shape Representation and Pattern Recognition, R. D. Juday, ed., Proc. Soc. Photo-Opt. Instrum. Eng.938, 261–265 (1988).
  132. F. M. Dickey, B. D. Hansche, “Quad-phase correlation filters for pattern recognition,” Appl. Opt. 28, 1611–1613 (1989). [CrossRef] [PubMed]
  133. F. M. Dickey, B. V. K. Vijaya Kumar, L. A. Romero, J. M. Connelly, “Complex ternary matched filters yielding high signal-to-noise ratios,” Opt. Eng. 29, 994–1001 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited