OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 24 — Aug. 20, 1992
  • pp: 4915–4917

Useful receiver telescope diameter of ground-based and airborne 1-, 2-, and 10-μm coherent lidars in the presence of atmospheric refractive turbulence

Kin Pui Chan and Dennis K. Killinger  »View Author Affiliations


Applied Optics, Vol. 31, Issue 24, pp. 4915-4917 (1992)
http://dx.doi.org/10.1364/AO.31.004915


View Full Text Article

Enhanced HTML    Acrobat PDF (860 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The integrated effect of atmospheric refractive turbulence on ground-based and airborne 1-, 2-, and 10-μm coherent lidars with different geometries is calculated as a function of height by using altitude profiles of Cn2.

© 1992 Optical Society of America

History
Original Manuscript: August 27, 1991
Published: August 20, 1992

Citation
Kin Pui Chan and Dennis K. Killinger, "Useful receiver telescope diameter of ground-based and airborne 1-, 2-, and 10-μm coherent lidars in the presence of atmospheric refractive turbulence," Appl. Opt. 31, 4915-4917 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-24-4915


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. F. Clifford, S. Wandzura, “Monostatic heterodyne lidar performance: the effect of the turbulent atmosphere,” Appl. Opt. 20, 514–516 (E) 1502 (1981). [CrossRef] [PubMed]
  2. F. Amzajerdian, J. F. Holmes, “Time-delayed statistics for a bistatic coherent lidar operating in atmospheric tubulence,” Appl. Opt. 30, 3029–3033 (1991). [CrossRef] [PubMed]
  3. K. P. Chan, D. K. Killinger, “Enhanced detection of atmospheric turbulence-distorted 1-μm coherent lidar returns using a two-dimensional heterodyne detector array,” Opt. Lett. 16, 1219–1221 (1991). [CrossRef] [PubMed]
  4. K. P. Chan, D. K. Killinger, N. Sugimoto, “Heterodyne Doppler 1-μm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence,” Appl. Opt. 30, 2617–2627 (1991). [CrossRef] [PubMed]
  5. R. L. Schwiesow, “Effects of Cn2 on a vertically pointing diffraction-limited lidar,” Appl. Opt. 27, 2517–2523 (1988). [CrossRef] [PubMed]
  6. M. Kavaya, S. W. Henderson, E. C. Rusell, R. M. Huffaker, R. M. Frehlich, “Monte Carlo computer simulation of ground-based and space-based coherent DIAL water vapor profiles,” Appl. Opt. 28, 840–851 (1989). [CrossRef] [PubMed]
  7. J. C. Wyngaard, Y. Izumi, “Behavior of the refractive-index structure parameter near the ground,” J. Opt. Soc. Am. 61, 1646–1650 (1971). [CrossRef]
  8. J. L. Bufton, P. O. Minotte, M. W. Fitzmaurice, “Measurements of turbulence profiles in the troposphere,” J. Opt. Soc. Am. 62, 1068–1070 (1972). [CrossRef]
  9. C. W. Fairall, A. S. Frish, “Diurnal and annual variation in mean profiles of Cn2,” NOAA Technical Memorandum ERL WPL-195 (National Oceanic and Atmospheric Administration, Boulder, Co., 1991).
  10. R. E. Hufnagel, “Propagation through atmospheric turbulence,” in The Infrared Handbook, W. L. Wolfe, G. I. Zissis, eds. (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited