OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 24 — Aug. 20, 1992
  • pp: 4931–4939

Photoionization-pumped x-ray lasers using ultrashort-pulse excitation

Henry C. Kapteyn  »View Author Affiliations


Applied Optics, Vol. 31, Issue 24, pp. 4931-4939 (1992)
http://dx.doi.org/10.1364/AO.31.004931


View Full Text Article

Enhanced HTML    Acrobat PDF (1403 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent advances in the production of ultrashort x-ray pulses by using femtosecond laser-produced plasmas coupled with the development of terawatt ultrashort-pulse lasers may make possible ultrashort-pulse photoexcited x-ray lasers. I examine the creation of a population inversion on the K-α transition of neon at 1.5 nm by using the photoionization scheme first suggested by Duguay and Rentzepis in 1967. It is shown that this laser can be produced by using a pump laser of ~ 10 J in 50 fs, provided that a sufficiently bright laser-produced plasma x-ray source can be created. Recent experimental and theoretical results are discussed that verify the potential feasibility of this scheme.

© 1992 Optical Society of America

History
Original Manuscript: September 30, 1991
Published: August 20, 1992

Citation
Henry C. Kapteyn, "Photoionization-pumped x-ray lasers using ultrashort-pulse excitation," Appl. Opt. 31, 4931-4939 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-24-4931


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Duguay, P. M. Rentzepis, “Some approaches to vacuum UV and x-ray lasers,” Appl. Phys. Lett. 10, 350–352 (1967). [CrossRef]
  2. W. T. Silfvast, J. J. Macklin, O. R. Wood, “High-gain inner-shell photoionization laser in Cd vapor pumped by soft-x-ray radiation from a laser-produced plasma source,” Opt. Lett. 8, 551–553 (1983). [CrossRef] [PubMed]
  3. H. C. Kapteyn, R. W. Lee, R. W. Falcone, “Observation of a short-wavelength laser pumped by Auger decay,” Phys. Rev. Lett. 57, 2939–2942 (1986). [CrossRef] [PubMed]
  4. H. C. Kapteyn, R. W. Falcone, “Auger-pumped short-wavelength lasers in xenon and krypton,” Phys. Rev. A 37, 2033–2038 (1988). [CrossRef] [PubMed]
  5. D. J. Walker, C. P. J. Barty, G. Y. Yin, J. F. Young, S. E. Harris, “Observation of super Coster–Kronig-pumped gain in Zn iii,” Opt. Lett. 12, 894–896 (1987). [CrossRef] [PubMed]
  6. M. H. Sher, J. J. Macklin, J. F. Young, S. E. Harris, “Saturation of the Xe iii 109-nm laser using traveling-wave laser-produced-plasma excitation,” Opt. Lett. 12, 891–893 (1987). [CrossRef] [PubMed]
  7. R. W. Falcone, M. M. Murnane, “Proposal for a femtosecond x-ray light source,” in Short Wavelength Coherent Radiation: Generation and Applications, D. T. Attwood, J. Bokor, eds. AIP Conf. Proc.147. 81–85. (1986).
  8. M. M. Murnane, H. C. Kapteyn, R. W. Falcone, “High-density plasmas produced by ultrafast laser pulses,” Phys. Rev. Lett. 62, 155–158 (1989). [CrossRef] [PubMed]
  9. M. Murnane, H. Kapteyn, S. Gordon, S. Verghese, J. Bokor, W. Mansfield, R. Gnall, E. Glytsis, T. Gaylord, R. Falcone, “Efficient coupling of high-intensity sub-picosecond laser pulses into dilute solid targets,” in Short-Wavelength Coherent Radiation: Generation and Application, P. H. Bucksbaum, N. M. Ceglio, eds., Vol. 11 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 281–284.
  10. H. C. Kapteyn, M. M. Murnane, A. Szoke, A. Hawryluk, R. W. Falcone, “Enhanced absorption and ASE pedestal suppression in the generation of ultrashort-pulse solid-density plasmas,” in Ultrafast Phenomena VII, C. B. Harris, E. P. Ippen, G. A. Mourou, A. H. Zewail, eds., Vol. 53 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1990), pp. 122–123. [CrossRef]
  11. M. M. Murnane, R. W. Falcone, “High-power femtosecond dye-laser system,” J. Opt. Soc. Am. B 5, 1573–1575 (1988). [CrossRef]
  12. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986). [CrossRef]
  13. O. E. Martinez, “Design of high-power ultrashort pulse amplifiers by expansion and recompression,” IEEE J. Quantum Electron. QE-23, 1385–1387 (1987). [CrossRef]
  14. M. Pessot, P. Maine, G. Mourou, “1000 times expansion/compression of optical pulses for chirped pulse amplification,” Opt. Commun. 62, 419–421 (1987). [CrossRef]
  15. P. Maine, G. Mourou, “Amplification of 1-nsec pulses in Nd:glass followed by compression to 1 psec,” Opt. Lett. 13, 467–469 (1988). [CrossRef] [PubMed]
  16. Y. L. Stankevich, “The possibility of induced intensification of characteristic x radiation,” Sov. Phys. Dokl. 15, 356–357 (1970).
  17. F. T. Arecchi, G. P. Banfi, A. M. Malvezzi, “Threshold evaluations for an x-ray laser,” Opt. Commun. 10, 214–218 (1974). [CrossRef]
  18. R. C. Elton, “Quasi-stationary population inversion on K-α transitions,” Appl. Opt. 14, 2243–2249 (1975). [CrossRef] [PubMed]
  19. T. S. Axelrod, “Inner-shell photoionization-pumped x-ray lasers. Sulfur,” Phys. Rev. A 13, 376–382 (1976). [CrossRef]
  20. S. A. Mani, H. A. Hyman, J. D. Daugherty, “Lithium-ion soft x-ray laser,” J. Appl. Phys. 47, 3099–3106 (1976). [CrossRef]
  21. S. E. Harris, J. F. Young, “Core-excited metastable levels: application to spectroscopy, to the generation of picosecond extreme-ultraviolet pulses, and to lasers,” J. Opt. Soc. Am. B 4, 547–562 (1987). [CrossRef]
  22. C. P. Bhalla, N. O. Folland, M. A. Hein, “Theoretical K-shell Auger rates, transition energies, and fluorescence yields for multiply ionizaed neon,” Phys. Rev. A 8, 649–657 (1973). [CrossRef]
  23. L. L. House, “Theoretical wavelengths for K-α type x-ray lines in the spectra of ionized atoms (carbon to copper),” Astron. J Suppl. 18, 21–45 (1969). [CrossRef]
  24. D. L. Musinski, T. M. Henderson, R. J. Simms, T. R. Pattinson, R. B. Jacobs, “Technological aspects of cryogenic laser-fusion targets,” J. Appl. Phys. 51, 1394–1402 (1980). [CrossRef]
  25. R. H. Dixon, J. L. Ford, T. N. Lee, R. C. Elton, “Solid neon sources for plasmas and x-ray lasers,” Rev. Sci. Instrum 56, 471–472 (1985). [CrossRef]
  26. H. C. Kapteyn, “Photoionization-pumped short-wavelength lasers,” Ph.D. dissertation (University of California, Berkeley, Berkeley, Calif., 1989).
  27. L. Spitzer, Physics of Fully Ionized Gases (Interscience, New York, 1956), p. 78.
  28. A. Caruso, R. Gratton, “Interaction of short laser pulses with solid materials,” Plasma Phys. 11, 839–847 (1969). [CrossRef]
  29. M. Murnane, “Sub-picosecond laser-produced plasmas,” Ph.D. dissertation (University of California, Berkeley, Berkeley, Calif., 1989).
  30. M. D. Rosen, “Scaling laws for femtosecond laser plasma interactions,” in Femtosecond to Nanosecond High-Intensity Lasers and Applications, E. M. Campbell, ed., Proc. Soc. Photo-Opt. Instrum Eng.1229, 160–167 (1990).
  31. A. P. Thorne, Spectrophysics (Chapman & Hall, New York, 1988). [CrossRef]
  32. M. O. Krause, J. H. Oliver, “Natural widths of atomic K and L levels, Kα x-ray lines and several KLL Auger lines,” J. Phys. Chem Ref. Data 8, 329–338 (1979). [CrossRef]
  33. M. O. Krause, “Atomic radiative and radiationless yields for K and L shells,” J. Phys. Chem. Ref. Data 8, 307–327 (1979). [CrossRef]
  34. J. J. Yeh, I. Lindau, “Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103,” At. Data Nucl. Data Tables 32, 1–155 (1986). [CrossRef]
  35. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low energy x-ray interaction coefficients: photoabsorption, scattering, and reflection,” At. Data Nucl. Data Tables 27, 1–144 (1982). [CrossRef]
  36. J. Berkowitz, Photoabsorption, Photoionization, and Photoelectron Spectroscopy (Academic, New York, 1979), p. 469.
  37. H. Tawara, T. Kato, “Total and partial ionization cross sections of atoms and ions by electron impact,” At. Data Nucl. Data Tables 36, 167–353 (1987). [CrossRef]
  38. W. Lotz, “An empirical formula for the electron-impact ionization cross-section,” Z. Phys. 206, 205–211 (1967). [CrossRef]
  39. J. A. Beardon, “X-ray wavelengths,” Rev. Mod. Phys. 39, 78–124 (1967). [CrossRef]
  40. J. Berkowitz, Photoabsorption, Photoionization, and Photoelectron Spectroscopy (Academic, New York, 1979), p. 173.
  41. P. L. Hagelstein, “Physics of short wavelength laser design,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 1981). [CrossRef]
  42. D. J. G. Irwin, A. E. Livingston, J. A. Kernahan, “Radiative mean-life measurements in neon below 1000 Å,” Can. J. Phys. 51, 1948–1955 (1973). [CrossRef]
  43. D. L. Book, NRL Plasma Formulary (Naval Research Laboratory, Washington, D.C., 1983).
  44. Y. B. Zeldovich, Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966), p. 408.
  45. A. P. Thorne, Spectrophysics (Chapman & Hall, New York, 1988), p. 51.
  46. I. I. Sobelman, L. A. Vainshtein, E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Springer-Verlag, New York, 1981). p. 289.
  47. E. E. Fill, “Gain guiding of x-ray laser beams,” Opt. Commun. 67, 441–445 (1988). [CrossRef]
  48. M. M. Murnane, H. C. Kapteyn, M. D. Rosen, R. W. Falcone, “Ultrafast x-ray pulses from laser-produced plasmas,” Science 251, 531–536 (1991). [CrossRef] [PubMed]
  49. J. A. Cobble, G. T. Schappert, L. A. Jones, A. J. Taylor, G. A. Kryala, R. D. Fulton, “The interaction of a high irradiance, subpicosecond laser pulse with aluminum: the effects of the prepulse on x-ray production,” J. Appl. Phys. 69, 3369–3371 (1991). [CrossRef]
  50. J. A. Cobble, G. A. Kyrala, A. A. Hauer, A. J. Taylor, C. C. Gomez, N. D. Delamater, G. T. Schappert, “Kilovolt x-ray spectroscopy of a subpicosecond-laser-excited source,” Phys. Rev. A 39, 454–457 (1989). [CrossRef] [PubMed]
  51. J. D. Kmetic, J. J. Macklin, J. F. Young, “0.5 TW, 125-fs Ti:sapphire laser,” Opt. Lett. 16, 1001–1003 (1991).
  52. A. Sullivan, H. Hamster, H. C. Kapteyn, S. Gordon, W. White, H. Nathel, R. J. Blair, R. W. Falcone, “Multiterawatt 100 femtosecond laser,” Opt. Lett. 16, 1406–1408 (1991). [CrossRef] [PubMed]
  53. F. G. Patterson, M. D. Perry, “Design and performance of a 10-terawatt, subpicosecond neodymium: glass laser,” Opt. Lett. 16, 1107–1109 (1991). [CrossRef] [PubMed]
  54. M. Ferray, L. A. Lompré, O. Gobert, A. L’Huillier, G. Main-fray, C. Manus, A. Sanchez, A. S. Gomes, “Multiterawatt picosecond Nd-glass laser system at 1053 nm,” Opt. Commun. 75, 278–282 (1990). [CrossRef]
  55. K. Yamakawa, H. Shiraga, Y. Kato, C. P. J. Barty, “Prepulse-free 30-TW, 1 ps Nd:glass laser,” Opt. Lett. 16, 1593–1595 (1991). [CrossRef] [PubMed]
  56. C. P. J. Barty, D. A. King, G. Y. Yin, K. H. Hahn, J. E. Field, J. F. Young, S. E. Harris, “12.8-eV laser in neutral cesium,” Phys. Rev. Lett. 61, 2201–2204 (1988). [CrossRef] [PubMed]
  57. S. Szatmari, G. Kuhnle, P. Simon, “Pulse compression and traveling wave excitation scheme using a single dispersive element,” Appl. Opt. 29, 5372–5379 (1990). [CrossRef] [PubMed]
  58. J. Kirz, D. T. Attwood, B. L. Henke, M. R. Howells, K. D. Kennedy, K. J. Kim, J. B. Kortright, R. C. C. Perera, P. Pianetta, J. C. Riordan, J. H. Scofield, G. L. Stradling, A. C. Thompson, J. H. Underwood, D. Vaughan, G. P. Williams, H. Winick, X-Ray Data Booklet (Lawrence Berkeley Laboratory, Berkeley, Calif., 1985).
  59. K. D. Sevier, Low Energy Electron Spectrometry (Wiley–Interscience, New York, 1972).
  60. L. O. Werme, B. Grennberg, J. Nordgren, C. Nordling, K. Siegbahn, “Observation of vibrational fine structure in x-ray emission lines,” Phys. Rev. Lett. 30, 523–524 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited