OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 31, Iss. 24 — Aug. 20, 1992
  • pp: 4940–4949

Improving plasma uniformity in Z-pinch-driven neonlike krypton x-ray lasers

J. W. Thornhill, J. Davis, J. P. Apruzese, and R. Clark  »View Author Affiliations

Applied Optics, Vol. 31, Issue 24, pp. 4940-4949 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (1165 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Maintaining plasma uniformity is an essential requirement for successful x-ray laser designs. In this work we focus on a Z-pinch-driven neonlike krypton x-ray laser design for which we (1) investigate the role of initial mass loading in affecting plasma uniformity and gain and (2) show that there are advantages in terms of plasma uniformity to diluting a krypton plasma with a low-Z material such as helium. These results are obtained by using a one-dimensional radiation hydrodynamic model. The results of this study show that low-mass 100% krypton plasmas are optimal for achieving significant gain while maintaining plasma integrity. Diluting a krypton plasma with helium has the advantage of improving plasma uniformity, but it has the disadvantages of enhanced collisionality and line broadening, which are associated with the additional free electrons.

© 1992 Optical Society of America

Original Manuscript: May 7, 1991
Published: August 20, 1992

J. W. Thornhill, J. Davis, J. P. Apruzese, and R. Clark, "Improving plasma uniformity in Z-pinch-driven neonlike krypton x-ray lasers," Appl. Opt. 31, 4940-4949 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Krishnan, R. Nash, P. Le Pell, R. Rodenburg, “Krypton on krypton Z-pinch x-ray laser experiment,” Rep. PIT-87-02 (Physics International, San Leando, Calif., 1987).
  2. J. Davis, R. Clark, J. P. Apruzese, P. C. Kepple, “AZ-pinch neonlike x-ray laser,” IEEE Trans. Plasma Sci. 16, 482–490 (1988). [CrossRef]
  3. J. L. Porter, R. B. Spielman, M. K. Matzen, E. J. McGuire, T. W. Hussey, C. Deeney, R. R. Prasad, T. Nash, “Sodium–neon resonant photoexcitation soft x-ray laser experiments on Saturn,” in IEEE International Conference on Plasma Science (Institute of Electrical and Electronic Engineers, New York, 1990), p. 148.
  4. R. B. Spielman, M. K. Matzen, M. A. Palmer, P. B. Rand, T. W. Hussey, D. H. McDaniel, “Z-pinch implosions onto extremely low-density foam cylinders,” Appl. Phys. Lett. 47, 229–231 (1985). [CrossRef]
  5. F. S. Felber, F. J. Wessel, N. C. Wild, H. U. Rahman, A. Fisher, C. M. Fowler, M. A. Liberman, A. L. Velikovich, “Gas-puff Z-pinches with strong axial magnetic fields,” Lasers Part. Beams 5, 699–705 (1987). [CrossRef]
  6. R. B. Spielman, Sandia National Laboratories, Albuquerque, N.M. 87185 (personal communication, 1991).
  7. T. W. Hussey, M. K. Matzen, N. F. Roderick, “Large-scale-length nonuniformities in gas puff implosions,” J. Appl. Phys. 59, 2677–2684 (1986). [CrossRef]
  8. R. G. Evans, “Radiation cooling instabilities in laser driven ablation,” Plasma Phys. Controlled Fusion 27, 751–759 (1985). [CrossRef]
  9. J. Von Neumann, R. D. Richtmyer, “A method for the numerical calculation of hydrodynamic shocks,” J. Appl. Phys. 21, 232–238 (1950). [CrossRef]
  10. S. I. Braginskii, “Transport processes in a plasma,” in Reviews of Plasma Physics, M. A. Leontovich ed. (Consultants Bureau, New York, 1965), Vol. 1, pp. 205–311.
  11. D. Duston, J. Davis, “Soft x-ray and x-ray ultraviolet radiation from high density aluminum plasmas,” Phys. Rev. A 23, 2602–2621 (1981). [CrossRef]
  12. D. R. Bates, A. E. Kingston, R. W. P. McWhirter, “Recombination between electrons and atomic ions,” Proc. R. Soc. London Ser. A 267, 297–312 (1962). [CrossRef]
  13. See, for example, J. Davis, “Effective gaunt factors for electron impact ionization of multiply-charged nitrogen and oxygen ions,” J. Quant. Spectrosc. Radiat. Transfer 14, 549–554 (1974); A. Burgess, H. P. Summers, D. M. Cochrane, R. W. P. McWhirter, “Cross-sections for ionization of positive ions by electron impact,” Mon. Not. R. Astron. Soc. 179, 275–292 (1977). [CrossRef]
  14. V. L. Jacobs, J. Davis, P. C. Kepple, M. Blaha, “The influence of autoionization accompanied by excitation on dielectronic recombination and ionization equilibrium,” Astrophys. J. 211, 605–616 (1977). [CrossRef]
  15. W. J. Karzas, B. Latter, “Electron radiative transitions in a coulomb field,” Astrophys. J. Suppl. Ser. 6, 167–212 (1961). [CrossRef]
  16. V. L. Jacobs, J. Davis, “Effects of collisions on level populations and dielectronic recombination rates of multiply charged ions,” Phys. Rev. A 18, 697–710 (1978). [CrossRef]
  17. J. Davis, P. C. Kepple, M. Blaha, “Electron impact excitation coefficients for laboratory and astrophysical plasmas,” J. Quant. Spectrosc. Radiat. Transfer 16, 1043–1055 (1977). [CrossRef]
  18. J. Bailey, A. Fisher, N. Rostoker, “Coupling of radiation and hydrodynamics,” J. Appl. Phys. 60, 1939–1945 (1986). [CrossRef]
  19. J. P. Apruzese, J. Davis, D. Duston, R. W. Clark, “Influence of Lyman-series fine structure opacity on the K-shell spectrum and level populations of low to medium-Z plasmas,” Phys. Rev. A 29, 246–253 (1984). [CrossRef]
  20. J. P. Apruzese, J. Davis, D. Duston, K. G. Whitney, “Direct solution of the equation of transfer using frequency—and angle—averaged photon escape probabilities with application to a multistage, multilevel aluminum plasma,” J. Quant. Spectrosc. Radiat. Transfer 23, 479–487 (1980). [CrossRef]
  21. D. Duston, R. W. Clark, J. Davis, J. P. Apruzese, “Radiation energetics of a laser-produced plasma,” Phys. Rev. A 27, 1441–1460 (1983). [CrossRef]
  22. R. W. Clark, J. Davis, F. L. Cochran, “Dynamics of imploding neon gas-puff plasmas,” Phys. Fluids 29, 1971–1978 (1986). [CrossRef]
  23. J. P. Apruzese, P. C. Kepple, J. Davis, J. Pender, “Recombination lasing in heliumlike silicon: a possible path to the water window,” IEEE Trans. Plasma Sci. 16, 529–533 (1988). [CrossRef]
  24. V. V. Sobelev, “The diffusion of Lα-radiation in nebulae and stellar envelopes,” Sov. Astron. 1, 678–689 (1957).
  25. A. I. Shestakov, D. C. Eder, “Escape probabilities in a cylindrically expanding medium,” J. Quant. Spectrosc. Radiat. Transfer 42, 483–498 (1989). [CrossRef]
  26. J. Katzenstein, “Optimum coupling of imploding loads to pulse generators,” J. Appl. Phys. 52, 676–680 (1981). [CrossRef]
  27. G. Barak, N. Rostoker, “Semihydrodynamic model for ion separation in a fast pinch,” Appl. Phys. Lett. 41, 918–920 (1982). [CrossRef]
  28. M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, R. W. Lee, G. Charatis, G. E. Busch, C. L. Shepard, P. D. Rockett, “Exploding-foil technique for achieving a soft x-ray laser,” Phys. Rev. Lett. 54, 106–109 (1985). [CrossRef] [PubMed]
  29. D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, T. A. Weaver, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985). [CrossRef] [PubMed]
  30. D. C. Eder, “Modeling of a cylindrically expanding hydrogen-like fluorine x-ray laser,” Phys. Fluids B 12, 2462–2469 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited