OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 24 — Aug. 20, 1992
  • pp: 4950–4956

Reinvestigating the early resonantly photopumped x-ray laser schemes

Joseph Nilsen, James H. Scofield, and Elaine A. Chandler  »View Author Affiliations


Applied Optics, Vol. 31, Issue 24, pp. 4950-4956 (1992)
http://dx.doi.org/10.1364/AO.31.004950


View Full Text Article

Enhanced HTML    Acrobat PDF (848 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Although H and He-like resonantly photopumped laser schemes were among the earliest methods proposed for producing x-ray lasers, demonstrating these schemes in the laboratory has proved to be elusive. Nevertheless the resonantly photopumped schemes remain interesting both because of their potential to improve the efficiency of lasers that otherwise operate through other process such as recombination and because of their potential for yielding entirely new and relatively efficient lasers. We present an expanded list of candidate lasers that operate by utilizing Ly-α or He-α radiation from a pump ion to photopump an electron from the ground state of a H or He-like lasant ion to the n = 3 or 4 state, with subsequent lasing between the n = 4 → n = 3 or n = 3 → n = 2 states of the H or He-like ion. The example of the potassium-pumped chlorine scheme, which exhibits both 4 → 3 and 3 → 2 laser lines, has been modeled extensively, and the results of the calculation are presented.

© 1992 Optical Society of America

History
Original Manuscript: October 16, 1991
Published: August 20, 1992

Citation
Joseph Nilsen, James H. Scofield, and Elaine A. Chandler, "Reinvestigating the early resonantly photopumped x-ray laser schemes," Appl. Opt. 31, 4950-4956 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-24-4950


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Vinogradov, I. I. Sobelman, E. A. Yukov, “Possibility of constructing a far-ultraviolet laser utilizing transitions in multiply charged ions in an inhomogeneous plasma,” Sov. J. Quantum Electron. 5, 59–63 (1975). [CrossRef]
  2. B. A. Norton, N. J. Peacock, “Population inversion in laser-produced plasmas by pumping with opacity-broadened lines,” J. Phys. B 8, 989–996 (1975). [CrossRef]
  3. V. A. Bhagavatula, “Soft x-ray population inversion by resonant photoexcitation in multicomponent laser plasmas,” J. Appl. Phys. 47, 4535–4537 (1976). [CrossRef]
  4. W. E. Alley, G. Chapline, P. Kunasz, J. C. Weisheit, “Calculation of gain at x-ray wavelengths resulting from optical pumping of helium-like ions,” J. Quant. Spectrosc. Radiat. Transfer 27, 257–266 (1982). [CrossRef]
  5. R. C. Elton, X-Ray Lasers (Academic, San Diego, Calif., 1990), pp. 99–198.
  6. N. Qi, M. Krishnan, “Photopumping of a C iii ultraviolet laser by Mn vi line radiation,” Phys. Rev. Lett. 59, 2051–2054 (1987). [CrossRef] [PubMed]
  7. T. Boehly, M. Russotto, R. S. Craxton, R. Epstein, B. Yaakobi, L. B. Da Silva, J. Nilsen, E. A. Chandler, D. J. Fields, B. J. MacGowan, D. L. Matthews, J. H. Scofield, G. Shimkaveg, “Demonstration of a narrow divergence x-ray laser in neon-like titanium,” Phys. Rev. A 42, 6962–6965 (1990). [CrossRef] [PubMed]
  8. J. P. Apruzese, R. W. Clark, J. Davis, J. L. Porter, R. B. Spielman, M. K. Matzen, S. F. Lopez, J. S. McGurn, L. E. Ruggles, M. Vargas, D. K. Derzon, T. W. Hussey, E. J. McGuire, “Calculations of photoionization, photoexcitation, and gain production in a neon gas cell irradiated by a sodium Z-pinch on Saturn,” in Proceedings of the Second International Colloquium on X-ray Lasers, G. J. Tallents, ed. (IOP Publishing, Bristol, England, 1991), pp. 39–42.
  9. J. Nilsen, E. A. Chandler, “Analysis of the resonantly photo-pumped Na–Ne x-ray laser scheme,” Phys. Rev. A 44, 4591–4598 (1991). [CrossRef] [PubMed]
  10. B. N. Chichkov, E. E. Fill, “Prospects for resonant photoexcitation as a pumping mechanism for x-ray lasers,” Phys. Rev. A 42, 599–610 (1990). [CrossRef] [PubMed]
  11. Y. T. Lee, W. M. Howard, J. K. Nash, “Soft x-ray lasing ion Li-like iron by resonant photo-pumping,” J. Quant. Spectrosc. Radiat. Transfer 43, 335–345 (1990). [CrossRef]
  12. J. Nilsen, “Ni-like x-ray lasers resonantly photo-pumped by Ly-α radiation,” Phys. Rev. Lett. 66, 305–308 (1991). [CrossRef] [PubMed]
  13. S. Suckewer, C. H. Skinner, H. Milchberg, C. Keane, D. Voorhees, “Amplification of stimulated soft x-ray emission in a confined plasma column,” Phys. Rev. Lett. 55, 1753–1756 (1985). [CrossRef] [PubMed]
  14. Y. Kato, E. Miura, T. Tachi, H. Shiraga, H. Nishimura, H. Daido, M. Yamanaka, T. Jitsuno, M. Takagi, P. R. Herman, H. Takabe, S. Nakai, C. Yamanaka, M. H. Key, G. J. Tallents, S. J. Rose, P. T. Rumsby, “Observaton of gain at 54.2 Å on Balmer-Alpha transition of hydrogenic sodium,” Appl. Phys. B 50, 247–256 (1990). [CrossRef]
  15. I. P. Grant, B. J. McKenzie, P. H. Norrington, D. F. Mayers, N. C. Pyper, “An atomic multiconfigurational Dirac–Fock package,” Comput. Phys. Commun. 21, 207–231 (1980). [CrossRef]
  16. C. L. Pekeris, “Ground state of two-electron atoms,” Phys. Rev. 112, 1649–1658 (1958). [CrossRef]
  17. Y. Accad, C. L. Pekeris, B. Schiff, “S and P states of the helium isoelectronic sequence up to Z = 10,” Phys. Rev. A 4, 516–536 (1971). [CrossRef]
  18. J. H. Scofield, “Energy levels of hydrogen-, helium-, and neon-like ions,” Lawrence Berkeley Laboratory Rep. PUB-490 Revised, D. Vaughan, ed. (Lawrence Berkeley Laboratory, Berkeley, Calif., 1986), pp. 2-23–2-25.
  19. R. L. Kelly, “Atomic and ionic spectrum lines below 2000 angstroms: hydrogen through krypton,” J. Phys. Chem. Ref. Data 16Suppl. 1, 1–1678 (1987).
  20. G. W. Erickson, “Energy levels of one-electron atoms,” J. Phys. Chem. Ref. Data 6, 831–869 (1977). [CrossRef]
  21. W. R. Johnson, G. Soff, “The lamb shift in hydrogen-like atoms, 1 ≤ Z ≤ 110,” At. Data Nucl. Data Tables 33, 405–446 (1985). [CrossRef]
  22. U. I. Safronova, “Relativistic and radiative effects in He-like ions,” Phys. Scr. 23, 241–248 (1981). [CrossRef]
  23. G. W. Drake, “Theoretical energies for the n = 1 and 2 states of the helium isoelectronic sequence up to Z = 100,” Can. J. Phys. 66, 586–611 (1988). [CrossRef]
  24. P. Indelicato, “Multiconfiguration Dirac–Fock calculations of transition energies in two electron ions with 10 ≤ Z ≤ 92,” Nucl. Instrum. Methods B 31, 14–20 (1988). [CrossRef]
  25. P. Beiersdorfer, M. Bitter, S. von Goeler, K. W. Hill, “Experimental study of the x-ray transitions in the heliumlike isoelectronic sequence,” Phys. Rev. A 40, 150–157 (1989). [CrossRef] [PubMed]
  26. D. W. Phillion, C. J. Hailey, “Brightness and duration of x-ray line sources irradiated with intense 0.53 μm light at 60 and 120 ps pulse width,” Phys. Rev. A 34, 4886–4896 (1986). [CrossRef] [PubMed]
  27. N. J. Peacock, R. J. Speer, M. G. Hobby, “Spectra of highly ionized neon and argon in a plasma focus discharge,” J. Phys. B 2, 798–810 (1969). [CrossRef]
  28. E. Ya. Kononov, K. N. Koshelev, Yu. V. Sidelnikov, “Spectra of multiply ionized iron atoms in a low-inductance vacuum discharge time-varying ionization model for the plasma-point,” Sov. J. Plasma Phys. 3, 375–381 (1977).
  29. A. Schulz, R. Burhenn, F. B. Rosmej, H. J. Kunze, “Single-shot analysis of micropinches in a vacuum spark discharge,” J. Phys. D 22, 659–662 (1989). [CrossRef]
  30. G. F. Chapline, Department of Physics, Lawrence Liver-more National Laboratory, Livermore, Calif. 94550 (personal communication, 1991).
  31. P. L. Hagelstein, R. K. Jung, “Relativistic distorted-wave calculations of electron collision cross sections and rate coefficients for Ne-like ions,” At. Data Nucl. Data Tables 37, 121–188 (1987). [CrossRef]
  32. J. Nilsen, “Radiative-hydro modeling and atomic data bases,” in Atomic Processes in Plasmas, A. Hauer, A. L. Merts, eds., AIP Conf. Proc.168, 51–58 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited