OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 24 — Aug. 20, 1992
  • pp: 4973–4978

Fourier-transform holographic microscope

Waleed S. Haddad, David Cullen, Johndale C. Solem, James W. Longworth, Armon McPherson, Keith Boyer, and Charles K. Rhodes  »View Author Affiliations


Applied Optics, Vol. 31, Issue 24, pp. 4973-4978 (1992)
http://dx.doi.org/10.1364/AO.31.004973


View Full Text Article

Enhanced HTML    Acrobat PDF (1437 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a holographic microscope with a spatial resolution approaching the diffraction limit. The instrument uses a tiny drop of glycerol as a lens to create the spherically diverging reference illumination necessary for Fourier-transform holography. Measurement of the point-spread function, which is obtained by imaging a knife edge in dark-field illumination, indicates a transverse resolution of 1.4 μm with wavelength λ = 514.5 nm. Longitudinal resolution is obtained from the holograms by the numerical equivalent of optical sectioning. We describe the method of reconstruction and demonstrate the microscope’s capability with selected biological specimens. The instrument offers two unique capabilities: (1) it can collect three-dimensional information in a single pulse of light, avoiding specimen damage and bleaching; and (2) it can record three-dimensional motion pictures from a series of light pulses. The conceptual design is applicable to a broad range of wavelengths and we discuss extension to the x-ray regime.

© 1992 Optical Society of America

History
Original Manuscript: May 7, 1991
Published: August 20, 1992

Citation
Waleed S. Haddad, David Cullen, Johndale C. Solem, James W. Longworth, Armon McPherson, Keith Boyer, and Charles K. Rhodes, "Fourier-transform holographic microscope," Appl. Opt. 31, 4973-4978 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-24-4973


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948); Proc. R. Soc. London Ser. A 197, 454–487 (1949). [CrossRef] [PubMed]
  2. G. Stroke, “Attainment of high resolutions in image-forming x-ray microscopy with ‘lensless’ Fourier-transform holograms and correlative source-effect compensation,” in Optique des Rayons X et Microanalyse (Hermann, Paris, 1966), pp. 30–46.
  3. J. Winthrop, C. Worthington, “X-ray microscopy by successive Fourier transformation,” Phys. Lett. 15, 124–126 (1965); G. Stroke, R. Restrick, “Holography with spatially noncoherent light,” Appl. Phys. Lett. 7, 229–230 (1966); G. Stroke, D. Falconer, “Attainment of high resolutions in wavefront reconstruction imaging—II,” J. Opt. Soc. Am. 55, 595 (1965). [CrossRef]
  4. E. Leith, J. Upatnieks, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 569–570 (1965); E. Leith, J. Upatnieks, A. VanderLugt, “Hologram microscopy and lens aberration compensation by the use of holograms,” J. Opt. Soc. Am. 55, 595 (1965). [CrossRef]
  5. R. VanLigten, H. Osterberg, “Holographic microscopy,” Nature 211, 282–283 (1966). [CrossRef]
  6. J. C. Solem, G. C. Baldwin, G. F. Chapline, “Holography at x-ray wavelengths,” in Proceedings of International Conference on Lasers 1981, C. B. Collins, ed. (STS, McClean, Va, 1981), pp. 296–235; J. C. Solem, G. C. Baldwin, “Microholography of living organisms,” Science 218, 229–235 (1982); J. C. Solem, G. F. Chapline, “X-ray biomicroholography,” Opt. Eng. 23, 193–203 (1984); I. McNulty, J. Kirz, C. Jacobsen, M. R. Howells, E. H. Anderson, “First results with a Fourier transform holographic microscope,” in X-Ray Microscopy III, A. G. Michette, G. R. Morrison, C. J. Buckley, eds. (Springer-Verlag, Berlin, 1992), 251–254. [CrossRef] [PubMed]
  7. W. S. Haddad, D. Cullen, K. Boyer, C. K. Rhodes, J. C. Solem, R. S. Weinstein, “Design for a Fourier-transform holographic microscope,” in X-Ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 284–287; W. S. Haddad, J. C. Solem, D. Cullen, K. Boyer, C. K. Rhodes, “A description of the theory and apparatus for digital reconstruction of Fourier transform holograms,” in Electronics Imaging ‘87, advance printing of paper summaries (Institute for Graphic Communication, Boston, Mass., 1987), Vol. II, pp. 683–688; W. S. Haddad, D. Cullen, J. C. Solem, K. Boyer, C. K. Rhodes, “X-ray Fourier-transform holographic microscope,” in Short Wavelength Coherent Radiation: Generation and Applications, R. W. Falcone, J. Kirz, eds., Vol. 2 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1988), pp. 284–289.
  8. F. A. Jenkins, H. E. White, in Fundamentals of Optics, 4th ed. (McGraw-Hill, New York, 1976), pp. 71–72.
  9. H. T. M. van der Voort, G. J. Brakenhoff, “3-D image formation in high-aperture fluorescence confocal microscopy: a numerical analysis,” J. Microsc. (Oxford) 158, 43–54 (1989). [CrossRef]
  10. S. F. Gibson, F. Lanni, “Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy,” J. Opt. Soc. Am. A 8, 1601–1613 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited