OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 31, Iss. 24 — Aug. 20, 1992
  • pp: 5034–5037

Polarization-stabilized 1.15- and 3.39-μm He–Ne lasers

M-L. Junttila and A. S. Pine  »View Author Affiliations

Applied Optics, Vol. 31, Issue 24, pp. 5034-5037 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (526 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two methods for polarization stabilization of an internal-mirror 3.39-μm He–Ne laser are reported. The first relies on a concurrently lasing 1.15-μm transition by fixing the relative amplitude of two orthogonally polarized longitudinal modes that are split by a Rochon prism and detected with separate Si photodiodes. In the second method, two spatially separated orthogonally polarized adjacent 3.39-μm modes are optically balanced, differentially chopped, and recombined on a single InSb photodiode for phase-sensitive detection. The dual-wavelength scheme has been tested by beating against a methane-stabilized 3.39-μm He–Ne laser, which yields maximum excursions of < 0.5 MHz over several hours and comparable reproducibility. The polarization-stabilized He–Ne laser has been used as a reference for a tunable color-center laser molecular-beam optothermal spectrometer and provides a precision of better than 2 MHz.

© 1992 Optical Society of America

Original Manuscript: October 31, 1991
Published: August 20, 1992

M-L. Junttila and A. S. Pine, "Polarization-stabilized 1.15- and 3.39-μm He–Ne lasers," Appl. Opt. 31, 5034-5037 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. S. Pine, G. T. Fraser, “Vibrational predissociation in the CO2 dimer and trimer and rare gas–CO2 complexes,” J. Chem. Phys. 89, 100–1099 (1988). [CrossRef]
  2. R. L. Barger, J. L. Hall, “Pressure shift and broadening of methane line at 3.39 μm studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22, 4–8 (1969). [CrossRef]
  3. K. M. Evenson, J. S. Wells, F. R. Peterson, B. L. Danielson, G. W. Day, “Accurate frequencies of molecular transitions used in laser stabilization: the 3.39 μm transition in CH4 and the 9.33 and 10.18 μm transitions in CO2,” Appl. Phys. Lett. 22, 192–195 (1973). [CrossRef]
  4. R. L. Barger, J. L. Hall, “Wavelength of the 3.39 μm laser-saturated absorption line of methane,” Appl. Phys. Lett. 22, 196–199 (1973). [CrossRef]
  5. R. Balhorn, H. Kunzmann, F. Lebowsky, “Frequency stabilization of internal-mirror helium–neon lasers,” Appl. Opt. 11, 742–743 (1972). [CrossRef] [PubMed]
  6. T. M. Niebauer, J. E. Faller, H. M. Godwin, J. L. Hall, R. L. Barger, “Frequency stability measurements on polarization-stabilized He–Ne lasers,” Appl. Opt. 27, 1285–1289 (1988), and references therein. [CrossRef] [PubMed]
  7. T. Fellman, P. Junger, B. Stahlberg, “Stabilization of a green He–Ne laser,” Appl. Opt. 26, 2705–2706 (1987). [CrossRef] [PubMed]
  8. M-L. Junttila, B. Stahlberg, “Investigation of the mode properties and stabilization of an internal mirror 1523 nm He–Ne laser,” Phys. Scr. 41, 667–668 (1990). [CrossRef]
  9. W. G. Sweitzer, E. G. Kessler, R. D. Deslattes, H. P. Layer, J. R. Whetstone, “Description, performance, and wavelengths of iodine stabilized lasers,” Appl. Opt. 12, 2927–2938 (1973), and references therein. [CrossRef]
  10. A. L. Bloom, W. E. Bell, R. C. Rempel, “Laser operation at 3.39 μm in a helium-neon mixture,” Appl. Opt. 2, 317–318 (1963). [CrossRef]
  11. H. DeLang, G. Bouwhuis, E. T. Ferguson, “Saturation induced anisotropy in a gaseous medium in zero magnetic field,” Phys. Lett. 19, 482–484 (1965). [CrossRef]
  12. E. K. Hasle, “Polarization properties of He–Ne lasers,” Opt. Commun. 31, 206–210 (1979). [CrossRef]
  13. T. J. Bridges, J. W. Kluver, “Dichroic calcite polarizers for the infrared,” Appl. Opt. 4, 1121–1125 (1965). [CrossRef]
  14. J. N. Desai, T. Chandrasekhar, R. Madhavan, “Frequency stabilisation of He–Ne lasers,” J. Phys. E 12, 1040–1042 (1979). [CrossRef]
  15. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966). [CrossRef]
  16. J. A. Barnes, “Tables of bias functions, B1 and B2, for variances based on finite samples of processes with power law spectral densities,” Natl. Bur. Stand. Tech. Note 375 (U.S. Government Printing Office, Washington, D.C., 1969).
  17. M. J. Coulombe, A. S. Pine, “Linear scan control of tunable lasers using a scanning Fabry–Perot,” Appl. Opt. 18, 1505–1512 (1979). [CrossRef] [PubMed]
  18. J. L. Domenech, M-L. Junttila, A. S. Pine, “Molecular-beam spectrum of the 3.3 μm ν12 band of benzene,” J. Mol. Spectrosc. 149, 391–398 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited