OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 31, Iss. 24 — Aug. 20, 1992
  • pp: 5044–5050

Feedback effects in optical communication systems: characteristic curve for single-mode InGaAsP lasers

F. Brivio, C. Reverdito, G. Sacchi, G. Chiaretti, and M. Milani  »View Author Affiliations

Applied Optics, Vol. 31, Issue 24, pp. 5044-5050 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (707 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An experimental analysis of InGaAsP injection lasers shows an unexpected decrease of the differential quantum efficiency as a function of injected current when optical power is fed back into the active cavity of a diode inserted into a long transmission line. To investigate the response of laser diodes to optical feedback, we base our analysis on a microscopic model, resulting in a set of coupled equations that include the microscopic parameters that characterize the material and the device. This description takes into account the nonlinear dependence of the interband carrier lifetime on the level of optical feedback. Good agreement between the analytical description and experimental data is obtained for threshold current and differential quantum efficiency as functions of the feedback ratio.

© 1992 Optical Society of America

Original Manuscript: March 13, 1990
Published: August 20, 1992

F. Brivio, C. Reverdito, G. Sacchi, G. Chiaretti, and M. Milani, "Feedback effects in optical communication systems: characteristic curve for single-mode InGaAsP lasers," Appl. Opt. 31, 5044-5050 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Lang, K. Kobayashi, “External optical feedback on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980). [CrossRef]
  2. H. Temkin, N. A. Olsson, J. H. Abeles, R. A. Logan, M. B. Panish, “Reflection noise in index guided InGaAsP lasers,” IEEE J. Quantum Electron. QE-22, 286–293 (1986). [CrossRef]
  3. C. H. Henry, R. F. Kazarinov, “Instability of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron. QE-22, 294–301 (1986). [CrossRef]
  4. D. Lenstra, B. H. Verbeek, A. J. den Boef, “Coherence collapse in single mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. QE-21, 674–679 (1985). [CrossRef]
  5. K. Petermann, Laser Diode Modulation and Noise (Kluwer, Tokyo, 1988). [CrossRef]
  6. G. Wenke, R. Gross, P. Meissner, E. Patzak, “Characteristics of a compact three cavity laser configuration,” IEEE J. Lightwave Technol. LT-5, 608–615 (1987); N. A. Olsson, J. P. van der Ziel, “Performance characteristics of 1.5-μm external cavity semiconductor lasers for coherent optical communications,” IEEE J. Lightwave Technol. LT-5, 510–515 (1987). [CrossRef]
  7. O. Hirota, Y. Suematsu, “Noise properties of injection lasers due to reflected waves,” IEEE J. Quantum Electron. QE-15, 142–148 (1980).
  8. W. Bludau, R. Rossberg, “Characterization of laser to fiber coupling techniques by their optical feedback,” Appl. Opt. 21, 1933–1939 (1982). [CrossRef] [PubMed]
  9. G. Chiaretti, C. Reverdito, G. Sacchi, F. Brivio, M. Milani, “Separate external cavity feedback effects in optical communication systems,” in New Laser Technologies and Applications, A. A. Carabelas, T. Letardi, eds. (Editrice Compositori, Bologna, 1989), pp. 303–320.
  10. G. Chiaretti, C. Vaccarino, M. Milani, “Gain versus current in semiconductor injection lasers: a microscopic approach,” in Advances in Image Processing, A. J. Oosterlinck, A. G. Tescher, eds., Proc. Soc. Photo-Opt. Instrum. Eng.804, 144–152 (1988).
  11. G. Chiaretti, M. Brambilla, M. Milani, “A microscopic approach to amplitude modulation with small signal of current,” in Semiconductor Lasers, G. A. Acket, ed. Proc. Soc. Photo-Opt. Instrum. Eng.1025, 82–84 (1989).
  12. P. D. Dapkus, N. Holonyak, R. D. Burnham, D. L. Keune, J. W. Bird, K. L. Lawley, R. E. Walline, “Spontaneous and stimulated carrier lifetime (77 K) in the high purity surface free GaAs epitaxial layer,” J. Appl. Phys. 41, 4194–4199 (1970). [CrossRef]
  13. G. Chiaretti, D. Reichenbach, C. Vaccarino, M. Milani, “Analytical derivation of the structure of carrier lifetime and its nonlinear dependence on optical field intensity in semiconductor laser structures,” Appl. Opt. 28, 4556–4559 (1989). [CrossRef] [PubMed]
  14. G. H. B. Thompson, Physics of Semiconductor Laser Devices (Wiley, New York, 1980).
  15. J. E. Ripper, “Measurement of spontaneous carrier lifetime from stimulated emission delay semiconductor lasers,” J. Appl. Phys. 43, 1762–1763 (1972). [CrossRef]
  16. J. S. Blakemore, Semiconductor Statistics (Dover, New York, 1987).
  17. G. P. Bava, L. A. Lugiato, “Dynamical equations for optical bistability in multiple quantum well structures,” Opt. Commun. 78, 195–202 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited