OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 31, Iss. 24 — Aug. 20, 1992
  • pp: 5051–5060

Second-harmonic generation in zinc tris(thiourea) sulfate

H. O. Marcy, L. F. Warren, M. S. Webb, C. A. Ebbers, S. P. Velsko, G. C. Kennedy, and G. C. Catella  »View Author Affiliations

Applied Optics, Vol. 31, Issue 24, pp. 5051-5060 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (1288 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The linear and second-order nonlinear optical properties of single-crystal zinc tris(thiourea) sulfate, or ZTS, are determined. The deduced nonlinear coefficients are |d31| = 0.31, |d32| = 0.35, and |d33| = 0.23 pm/V compared with a |d14| value of 0.39 pm/V for potassium dihydrogen phosphate. Because it exhibits a low angular sensitivity (δΔk/δθ), ZTS may prove useful for type-II second-harmonic generation from 1.06 to 1.027 μm. We present the phase-matching measurement data for ZTS and compare the calculated frequency conversion efficiency for ZTS with that of several other well-characterized materials.

© 1992 Optical Society of America

Original Manuscript: February 1, 1991
Published: August 20, 1992

H. O. Marcy, L. F. Warren, M. S. Webb, C. A. Ebbers, S. P. Velsko, G. C. Kennedy, and G. C. Catella, "Second-harmonic generation in zinc tris(thiourea) sulfate," Appl. Opt. 31, 5051-5060 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. F. Belt, G. Gashurov, Y. S. Liu, “KTP as a harmonic generator for Nd:YAG lasers,” Laser Focus x(10), 110–124 (1985).
  2. R. S. Clark, “Getting the laser word to subs,” Photonics Spectra 22, 135–136 (1988).
  3. R. J. Gambino, “Optical storage disk technology,” Bull. Mater. Res. Soc. XV, 20–22 (1990), and references therein.
  4. G. Khanarian, ed., Nonlinear Optical Properties of Organic Materials III, Proc. Soc. Photo-Opt. Instrum. Eng.1337 (1990).
  5. S. Marder, G. Stucky, J. Sohn, eds., New Materials for Nonlinear Optics, Vol. 455 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1991). [CrossRef]
  6. S. P. Velsko, L. E. Davis, F. Wang, S. Monaco, D. Eimerl, “New organic materials for efficient harmonic generation of near ultraviolet light,” in Advances in Nonlinear Polymers and Inorganic Crystals, Liquid Crystals and Laser Media, S. Musikant, ed., Proc. Soc. Photo-Opt. Instrum. Eng.824, 178–181 (1988).
  7. D. S. Chemla, J. Zyss, eds., Nonlinear Optical Properties of Organic Materials and Crystals (Academic, New York, 1987), Vols. 1 and 2.
  8. M. H. Lyons, ed., Materials for Non-Linear and Electro-Optics 1989, Vol. 103 of AIP Conference Series (American Institute of Physics, New York, 1989).
  9. S. R. Marder, J. W. Perry, W. P. Schaefer, “Synthesis of organic salts with large second-order optical nonlinearities,” Science 245, 626–628 (1989). [CrossRef] [PubMed]
  10. G. Meredith, “Design and characterization of molecular and polymeric nonlinear optical materials: successes and pitfalls,” in Nonlinear Optical Properties of Organic and Polymeric Materials, Vol. 233 of ACS Symposium Series (American Chemical Society, Washington, D.C., 1983), pp. 27–56. [CrossRef]
  11. L. F. Warren, “New developments in ‘semiorganic’ nonlinear optical crystals,” in Electronic Materials—Our Future, Proceedings of the Fourth International SAMPE Electronics Conference, R. E. Allred, R. J. Martinez, K. B. Wischmann, eds. (Society for the Advancement of Material and Process Engineering, Covina, Calif., 1990), Vol. 4, pp. 388–396.
  12. S. Velsko, Laser Program Annual Report, Lawrence UCRL-JC-105000 (Lawrence Livermore National Laboratory, Livermore, Calif., 1990).
  13. P. R. Newman, L. F. Warren, P. Cunningham, T. Y. Chang, D. E. Cooper, G. L. Burdge, P. Polak-Dingels, C. K. Lowe-Ma, “Semiorganics: a new class of NLO materials,” in Advanced Organic Solid State Materials, L. Y. Chiang, P. M. Chaikin, D. O. Cowan, eds., Vol. 173 of Materials Research Society Symposium Proceedings (Materials Research Society, Pittsburgh, Pa., 1990), pp. 557–561.
  14. G. Xing, M. Jiang, Z. Shao, D. Xu, “Bis-thiourea cadmium chloride (BTCC)—a novel nonlinear optical crystal of organometallic complex,” Chin. Phys. Lasers 14, 357–364 (1987); X. Tao, M. Jiang, D. Xu, Z. Shao, “A new organometallic type nonlinear crystal: thiosemicarbazide cadmium chloride monohydrate,” Kexue Tongbao (foreign lang. ed.) 33, 651–654 (1988); W. S. Wang, K. Sutter, Ch. Bosshard, Z. Pan, H. Arend, P. Gunter, G. Chapuis, F. Nicolo, “Optical second-harmonic generation in single crystals of thiosemicarbazide cadmium bromide hydrate (Cd(NH2 CSNHNH2)Br2 · H2 O),” Jpn. J. Appl. Phys. 27, 1138–1141 (1988); N. Zhang, M. Jiang, D. Yuan, D. Xu, X. Tao, “A new nonlinear optical material—organometallic complex tri-allylthiourea cadmium chloride,” Chin. Phys. Lett. 6, 280–283 (1989). [CrossRef]
  15. G. D. Andreetti, L. Cavalca, A. Musatti, “The crystal and molecular structure of tris(thiourea) zinc(II) sulphate,” Acta Crystallogr. Sect. B 24, 683–690 (1968). [CrossRef]
  16. D. Eimerl, “Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs,” Ferroelectrics 72, 95–139 (1987). [CrossRef]
  17. W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674–1677 (1974). [CrossRef]
  18. F. D. Bloss, An Introduction to the Methods of Optical Crystallography (Holt, Rinehart & Winston, New York, 1961), Chap. 9.
  19. M. V. Hobden, “Phase matched second harmonic generation in biaxial crystals,” J. Appl. Phys. 38, 4365–4372 (1967). [CrossRef]
  20. B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, Reading, Mass., 1978), Chap. 2.
  21. D. Eimerl, S. P. Velsko, in Laser Program Annual Report, UCRL-50021-85 (Lawrence Livermore National Laboratory, Livermore, Calif., 1985), pp. 7–70.
  22. S. P. Velsko, “Direct measurements of phase matching properties in small single crystals of new nonlinear materials,” Opt. Eng. 28, 76–84 (1989).
  23. H. Ito, H. Naito, H. Inaba, “Generalized study on angular dependence of induced second-order optical polarizations and phase matching in biaxial crystals,” J. Appl. Phys. 46, 3992–3998 (1974). [CrossRef]
  24. J. Q. Yao, T. S. Fahlen, “Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4,” J. Appl. Phys. 55, 65–68 (1984). [CrossRef]
  25. M. Kaschke, C. Koch, “Calculation of nonlinear optical polarization and phase matching in biaxial crystals,” Appl. Phys. B 49, 419–423 (1989). [CrossRef]
  26. B. Wyncke, F. Brehat, “Calculation of the effective second-order non-linear coefficients along the phase matching directions in acentric orthorhombic biaxial crystals,” J. Phys. B 22, 363–376 (1989). [CrossRef]
  27. G. Boyd, D. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968). [CrossRef]
  28. S. K. Kurtz, “Measurement of nonlinear optical susceptibilities,” in Quantum Electronics, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975) Vol. 1, Part A, Chap. 3.
  29. D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987). [CrossRef]
  30. R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear opical coefficients of KDP, KD*P, BaB2O4 , LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1990). [CrossRef]
  31. F. Zernike, J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973), Chap. 4.
  32. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), Chap. 4.
  33. D. Eimerl, “High average power harmonic generation,” IEEE J. Quantum Electron. QE-23, 575–592 (1987). [CrossRef]
  34. S. Lin, Z. Sun, B. Wu, C. Chen, “The nonlinear optical characteristics of a LiB3O5 crystal,” J. Appl. Phys. 67, 633–638 (1990).
  35. H. Liao, H. Shen, Z. Zheng, T. Lian, Y. Zhou, C. Huang, R. Zeng, G. Yu, “Accurate values for the index of refraction and the optimum phase match parameters in a flux grown KTiOPO4 crystal,” Opt. Laser Technol. 2, 103–104 (1988). [CrossRef]
  36. J. M. Halbout, C. L. Tang, “Properties and applications of urea,” in Nonlinear Optical Properties of Organic Materials and Crystals, D. S. Chemla, J. Zyss, eds. (Academic, New York, 1987), Vol. 1, pp. 385–404.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited