OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 31, Iss. 24 — Aug. 20, 1992
  • pp: 5114–5120

Transmission of kilowatt-class CO2 laser light through dielectric-coated metallic hollow waveguides for material processing

Akihito Hongo, Ken’ichi Morosawa, Kazuhisa Matsumoto, Tsuneo Shiota, and Takashi Hashimoto  »View Author Affiliations

Applied Optics, Vol. 31, Issue 24, pp. 5114-5120 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (1442 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have measured the transmittance of 3-kW CO2 laser light through Ge-coated Ag hollow waveguides. The basic characteristics such as transmissivity, bending loss, and output-beam properties are described. A maximum laser power of 2.6 kW was delivered through a straight hollow waveguide that was 1.7 mm in diameter and 2 m long. Furthermore, 4-m-long waveguides were fabricated by joining two waveguides. Finally, preliminary experiments on welding steel plates were done with the light transmitted through the waveguide. Although the focusing properties of the output beam should be improved for practical laser processing, this type of waveguide is promising for high-power CO2 laser-light transmission.

© 1992 Optical Society of America

Original Manuscript: October 7, 1991
Published: August 20, 1992

Akihito Hongo, Ken’ichi Morosawa, Kazuhisa Matsumoto, Tsuneo Shiota, and Takashi Hashimoto, "Transmission of kilowatt-class CO2 laser light through dielectric-coated metallic hollow waveguides for material processing," Appl. Opt. 31, 5114-5120 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Katsuyama, H. Matsumura, Infrared Optical Fibers (Hilger, Philadelphia, Pa., 1989).
  2. M. Miyagi, A. Hongo, Y. Matsuura, “Hollow IR waveguides,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 26–35 (1990).
  3. N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990). [CrossRef] [PubMed]
  4. J. A. Harrington, C. C. Gregory, “Hollow sapphire fibers for the delivery of CO2 laser energy,” Opt. Lett. 15, 541–543 (1990). [CrossRef] [PubMed]
  5. M. Saito, M. Takizawa, S. Sakuragi, F. Tanei, “Infrared image guide with bundled As-S glass fibers,” Appl. Opt. 24, 2304–2308 (1985). [CrossRef] [PubMed]
  6. H. Ishiwatari, M. Ikedo, F. Tateishi, “An optical cable for a CO2 laser scalpel,” IEEE J. Lightwave Technol. LT-4, 1273–1279 (1986). [CrossRef]
  7. A. Hongo, K. Morosawa, T. Shiota, K. Suzuki, S. Iwasaki, M. Miyagi, “Transmission of 1-kW-class CO2 laser light through circular hollow waveguides for material processing,” Appl. Phys. Lett. 58, 1582–1584 (1991). [CrossRef]
  8. M. Miyagi, A. Hongo, Y. Aizawa, S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983). [CrossRef]
  9. A. Hongo, K. Morosawa, T. Shiota, Y. Matuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990). [CrossRef]
  10. Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989). [CrossRef]
  11. A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 μm,” Opt. Laser Technol. 19, 214–216 (1987). [CrossRef]
  12. E. Garmire, T. McMahon, M. Bass, “Propagation of infrared light in flexible hollow waveguides,” Appl. Opt. 15, 145–150 (1976). [CrossRef] [PubMed]
  13. M. E. Marhic, E. Garmire, “Low-order TE0q operation of a CO2 laser for transmission through circular metallic waveguides,” Appl. Phys. Lett. 38, 743–745 (1981). [CrossRef]
  14. M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984). [CrossRef]
  15. Y. Matuura, M. Miyagi, A. Hongo, “Loss reduction of dielectric-coated metallic hollow waveguides for CO2 laser light transmission,” Opt. Laser Technol. 22, 141–145 (1990). [CrossRef]
  16. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited