OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 24 — Aug. 20, 1992
  • pp: 5121–5132

Extinction of visible and infrared beams by falling snow

D. L. Hutt, L. R. Bissonnette, D. St. Germain, and J. Oman  »View Author Affiliations


Applied Optics, Vol. 31, Issue 24, pp. 5121-5132 (1992)
http://dx.doi.org/10.1364/AO.31.005121


View Full Text Article

Enhanced HTML    Acrobat PDF (1676 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Classical optics holds that the extinction cross of particles should be equal to twice their geometric cross section, in the limit where the particles are much larger than the wavelength. It follows that the extinction coefficient of such large scatterers should be independent of wavelength. Snowflakes are much larger than the wavelengths of visible and infrared radiation, yet many investigators have found that the visible and infrared extinction coefficient of falling snow measured with transmissometers is wavelength dependent. This dependency is known to be a result of the scattering contribution to the transmissometer signal. Furthermore, many measurements in the visible and infrared show that extinction values measured simultaneously with two transmissometers are linearly related up to at least 12 km−1. The slope depends on the wavelengths and optical characteristics of the transmissometers. We show that for small values of extinction, the observations can be explained by taking into account single-scattering contributions to transmissometer signals. For high values of extinction, a multiple-scattering model gives good agreement with measurements.

© 1992 Optical Society of America

History
Original Manuscript: April 1, 1991
Published: August 20, 1992

Citation
D. L. Hutt, L. R. Bissonnette, D. St. Germain, and J. Oman, "Extinction of visible and infrared beams by falling snow," Appl. Opt. 31, 5121-5132 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-24-5121


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. A. Poliakov, V. D. Tretjakov, “Visibility in falling snow,” Tr. Gl. Geofiz. Obs. 100, 53–57 (1960).
  2. O. Lillesaeter, “Parallel-beam attenuation of light, particularly by falling snow,” J. Appl. Meteorol. 4, 607–613 (1965). [CrossRef]
  3. H. W. O’Brien, “Visibility and light attenuation in falling snow,” J. Appl. Meteorol. 9, 671–683 (1970). [CrossRef]
  4. M. C. Sola, R. J. Bergmann, “Multi-spectral propagation measurements through snow” in Topical Meeting on Optical Propagation Through Turbulence, Rain and Fog, 1977 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1977), paper ThB4.
  5. M. J. Persky, W. O. Gallery, “Validation and analysis of SNOW-ONE-A transmission data,” in Proceedings of SNOW Symposium IV, G. W. Aitken, ed. (U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, N. H., 1984), p. 9.
  6. J. A. Curcio, P. Lebow, “Spectral transmittance measurements at SNOW-TWO,” Spec. Rep. 84-20, 3-16 (U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, N. H., 1984).
  7. S. T. Hanley, B. L. Bean, R. Soulon, J. Randhawa, R. A. Dise, “SMART transmission support at SNOW IV,” in Proceedings of SNOW Symposium VI, A. W. Hogan, R. Redfield, eds. (U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, N. H., 1987), p. 69.
  8. J. D. Mill, E. P. Shettle, “A preliminary LOWTRAN snow model,” in Proceedings of SNOW Symposium II, G. W. Aitken, ed. (U. S. Army Cold Regions Research and Engineering Laboratory, Hanover, N. H., 1983), p. 239.
  9. D. L. Hutt, L. R. Bissonnette, D. St. Germain, “Multi-wavelength transmittance through falling snow,” in Propagation Engineering, N. S. Kopeika, W. B. Miller, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1115, 254 (1989).
  10. W. E. K. Middleton, “The effect of the angular aperture of a telescope on the telephotometry of collimated and non-collimated beams,” J. Opt. Soc. Am. 39, 576–581 (1949). [CrossRef]
  11. J. R. Hodkinson, I. Greenleaves, “Computations of light-scattering and extinction by spheres according to diffraction and geometrical optics,” J. Opt. Soc. Am. 53, 577–588 (1963). [CrossRef]
  12. V. E. Zuev, Laser Beams in the Atmosphere (Consultants Bureau, New York, 1982), Chap. 3, p. 150.
  13. L. W. Winchester, G. G. Gimmestad, “Scattering corrections to extinction coefficients measured in falling snow,” Opt. Eng. 22, 86–89 (1983).
  14. M. A. Seagraves, J. F. Ebersole, “Visible and infrared transmission through snow,” Opt. Eng. 22, 90–93 (1983).
  15. M. A. Seagraves, “Visible and infrared extinction in falling snow,” Appl. Opt. 25, 1166–1169 (1986). [CrossRef] [PubMed]
  16. C. F. Bohren, G. Koh, “Forward-scattering corrected extinction by nonspherical particles,” Appl. Opt. 24, 1023–1029 (1985). [CrossRef] [PubMed]
  17. L. R. Bissonnette, “Multiscattering model for propagation of narrow light beams in aerosol media,” Appl. Opt. 27, 2478–2484 (1988). [CrossRef] [PubMed]
  18. V. J. Schaefer, J. A. Day, A Field Guide to the Atmosphere (Houghton Mifflin, Boston, Mass., 1981), p. 324.
  19. K. Liou, J. E. Hansen, “Intensity and polarization for single scattering by polydisperse spheres: a comparison of ray optics and Mie theory,” J. Atmos. Sci 28, 995–1004 (1971). [CrossRef]
  20. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957), Chap. 8, p. 108.
  21. J. R. Hodkinson, “Light scattering and extinction by irregular particles larger than the wavelength,” in Electromagnetic Scattering, M. Kerker, ed. (Macmillan, New York, 1963), pp. 87–100.
  22. D. S. Bochkov, “Attenuation of a finite optical beam in a medium with large scatterers,” Atmos. Opt. 2, 468–472 (1989).
  23. V. E. Zuev, M. V. Kabanov, B. A. Savelev, “Propagation of laser beams in scattering media,” Appl. Opt. 8, 137–142 (1969). [CrossRef] [PubMed]
  24. L. R. Bissonnette, R. B. Smith, A. Ulitsky, J. D. Houston, A. I. Carswell, “Transmitted beam profiles, integrated backscatter and range resolved backscatter in inhomogeneous laboratory water droplet clouds,” Appl. Opt. 27, 2485–2494 (1988). [CrossRef] [PubMed]
  25. F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: computer code lowtran 6,” Rep. AFGL-TR-83-0187 (U. S. Air Force Geophysics Laboratory, Cambridge, Mass., 1983).
  26. D. St. Germain, “Polar nephelometer for measuring snowflake phase functions,” in Proceedings of SNOW Symposium VII, R. E. Bates, A. W. Hogan, E. A. Wright, eds. (U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, N. H., 1987), p. 77.
  27. C. F. Bohren, “Colors of snow, frozen waterfalls and icebergs,” J. Opt. Soc. Am. 73, 1646–1652 (1983). [CrossRef]
  28. C. F. Bohren, T. J. Nevitt, “Absorption by a sphere: a simple approximation,” Appl. Opt. 22, 774–775 (1983). [CrossRef] [PubMed]
  29. S. J. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited