OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 31, Iss. 25 — Sep. 1, 1992
  • pp: 5246–5254

Integration of a curved hybrid waveguide lens and photodetector array in a GaAs waveguide

T. Q. Vu, C. S. Tsai, and Y. C. Kao  »View Author Affiliations

Applied Optics, Vol. 31, Issue 25, pp. 5246-5254 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (1398 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For the first time, we believe, the integration of a waveguide lens and a photodetector array in GaAs for operation at a 1.3-μm wavelength is reported. The waveguide lens is a newly devised curved hybrid Fresnel/Bragg chirp grating lens fabricated by the ion-million technique. Desirable performance characteristics, including high throughput efficiency, freedom from coma (up to ±4 deg off axis), and a near-diffraction-limited focal-spot size, have been demonstrated with this curved hybrid lens. The 10-element photodetector array of the InGaAs photoconducting type shows a measured gain–bandwidth product that is higher than 1 GHz at high frequency, while at a lower frequency the gain is in the range of several thousands. The curved-hybrid-lens–photodetector array combination realized in the GaAs 5 × 13 mm2 in size has produced a well-resolved element spacing of 10 μm with cross talk that is lower than −14 dB. This lens–photodetector array combination constitutes a basic structure for the realization of monolithic acousto-optic and electro-optic circuits such as integrated-optic rf spectrum analyzers and multiport switches.

© 1992 Optical Society of America

Original Manuscript: October 9, 1991
Published: September 1, 1992

T. Q. Vu, C. S. Tsai, and Y. C. Kao, "Integration of a curved hybrid waveguide lens and photodetector array in a GaAs waveguide," Appl. Opt. 31, 5246-5254 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. See, for example, C. S. Tsai, Guided-Wave Acousto-Optics, Vol. 23 of Electronics and Photonics Series (Springer-Verlag, New York, 1990). [CrossRef]
  2. C. C. Lee, K. Y. Liao, C. S. Tsai, “Acousto-optic time-integrating correlator using hybrid integrated optics,” in Proceedings of the IEEE Ultrasonics Symposium, IEEE Catalog 82CH1823-4 (Institute of Electrical and Electronics Engineers, New York, 1982), pp. 405–407.
  3. C. M. Verber, R. P. Kenan, J. R. Busch, “Correlator based on an integrated optical spatial light modulator,” Appl. Opt. 20, 1626–1629 (1981). [CrossRef] [PubMed]
  4. C. S. Tsai, D. Y. Zang, P. Le, “High-packing density integrated optic device modules in LiNbO3 for programmable correlation of binary sequences,” Opt. Lett. 14, 889–891 (1989). [CrossRef] [PubMed]
  5. C. S. Tsai, P. Le, “A 4 × 4 nonblocking acoustooptic waveguide space switch,” Appl. Phys. Lett. 60, 431–433 (1992); Photonic Switching, Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 67–70. [CrossRef]
  6. P. Le, D. Y. Zang, C. S. Tsai, “Integrated electrooptic Bragg modulator modules for matrix–vector and matrix–matrix multiplications,” Appl. Opt. 27, 1780–1785 (1988); A. K. Roy, C. S. Tsai, “A new integrated acoustooptic matrix algebra processor architecture,” Appl. Phys. Lett. 59, 3093–3095 (1991). [CrossRef] [PubMed]
  7. T. Q. Vu, J. A. Norris, C. S. Tsai, “Planar waveguide lenses in GaAs by using ion milling,” Appl. Phys. Lett. 54, 1098–1100 (1989); T. Q. Vu, C. S. Tsai, “Ion-milled waveguide lenses and lens-array in GaAs,” IEEE J. Lightwave Technol. 7, 1559–1566 (1989). [CrossRef]
  8. C. C. Lee, M. M. Minot, “Low-index guided wave lens in GaAs substrates,” IEEE Photon. Tech. Lett. 1, 313–315 (1989). [CrossRef]
  9. Y. Abdelrazek, C. S. Tsai, T. Q. Vu, “An integrated optic rf spectrum analyzer in a ZnO-GaAs-AlGaAs waveguide,” IEEE J. Lightwave Technol. 8, 1833–1837 (1990). [CrossRef]
  10. E. Delano, “Primary aberration of menicus Fresnel lenses,” J. Opt. Soc. Am. 66, 1317–1320 (1976). [CrossRef]
  11. H. Turk, F. C. Chistie, G. E. Kandel, M. Haliona, “Simulation of waveguide grating lenses in GaAs,” in Integrated Optical Circuit Engineering II, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng.578, 178–183 (1985).
  12. G. C. Righini, G. Belli, M. Varasi, A. Vannucci, “Waveguide Fresnel lenses for integrated optical processor,” in Integrated Optics and Optoelectronics, L. McCaughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1177, 209–215 (1989).
  13. C. Jagannath, A. Silletti, A. N. M. M. Choudhury, B. Elman, P. McIman, “1.3 μm Monolithically integrated waveguide-interdigitated metal–semiconductor–metal photodetector on a GaAs substrate,” Appl. Phys. Lett. 56, 1892–1894 (1990). [CrossRef]
  14. F. Mallecot, J. F. Vinchant, M. Razeghi, D. Vandermoere, J. P. Vilcot, D. Decoster, “Monolithic integration of a short-length GaInAs photoconductor with a GaAs/GaAAs optical waveguide on a GaAs semi-insulating substrate,” Appl. Phys. Lett., 53, 2522–2524 (1988). [CrossRef]
  15. A. Antreasyan, W. T. Tsang, “High performance Ga0.47In0.53As photoconductive detectors grown by chemical beam epitaxy,” Appl. Phys. Lett. 49, 322–324 (1986). [CrossRef]
  16. K. Iizuka, J.-I. Akasaka, T. Tsubata, H. Hasegawa, “Surface recombination in InGaAs photoconductive detectors and its reduction by a novel passivation scheme using an MBE Si layer,” Inst. Phys. Conf. Ser. 106, 743–748 (1990).
  17. See, for example, S. R. Forrest, “The sensitivity of photoconductor receivers for long-wavelength optical communications,” IEEE J. Lightwave Technol. LT-3, 347–360 (1985); H. Beneking, “Gain and bandwidth of fast near-infrared photodetectors: a comparison of diodes, phototransistors, and photoconductive devices,” IEEE Trans. Electron Devices 29, 1420–1431 (1982). [CrossRef]
  18. C. S. Tsai, “Guided-wave acoustooptic Bragg modulators for wide-band integrated optic communications and signal processing,” IEEE Trans. Circuits Syst. CAS-26, 1072–1098 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited