OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 25 — Sep. 1, 1992
  • pp: 5259–5268

Integrated acousto-optic heterodyning device modules in LiNbO3 substrate

G. D. Xu and C. S. Tsai  »View Author Affiliations


Applied Optics, Vol. 31, Issue 25, pp. 5259-5268 (1992)
http://dx.doi.org/10.1364/AO.31.005259


View Full Text Article

Enhanced HTML    Acrobat PDF (1669 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper reports the realization of integrated acousto-optic (AO) device modules that combine a wideband AO Bragg cell, an ion-milled Bragg diffraction grating, and a titanium-indiffused proton-exchanged waveguide lens in a Y-cut LiNbO3 substrate, 1 × 8 × 16 mm3 in size, to perform optical heterodyning, and their application to rf signal processing. These integrated AO heterodyne modules have demonstrated the capabilities for channelized detection of the amplitude, the frequency, and the phase of wideband rf signals and thus the capability to perform interferometric rf spectral analysis with significantly improved performances over the conventional AO Bragg cells. The single-unit (basic) modules have provided single-tone simultaneous and two-tone third-order spurious-free dynamic ranges of 51 and 40 dB, respectively, and a bandwidth of 205 MHz centered at 350 MHz at the optical wavelength of 0.6328 μm, the optical power of 1.0 mW, and the drive power of 50 mW/rf signal input. Furthermore the dual-unit modules that consist of a pair of identical basic heterodyne devices in the same LiNbO3 waveguide substrate, also 1 × 8 × 16 mm3 in size, have been constructed and used to measure the angle of arrival of the rf signals.

© 1992 Optical Society of America

History
Original Manuscript: October 16, 1991
Published: September 1, 1992

Citation
G. D. Xu and C. S. Tsai, "Integrated acousto-optic heterodyning device modules in LiNbO3 substrate," Appl. Opt. 31, 5259-5268 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-25-5259


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Adler, “Interaction between light and sound,” IEEE Spectrum 4(5), 42–54 (1967). [CrossRef]
  2. A. VanderLugt, “Interferometric spectrum analyzer,” Appl. Opt. 20, 2770–2779 (1981). [CrossRef]
  3. A. Korpel, R. L. Whitman, “Visualization of a coherent light field by heterodyning with a scanning laser beam,” Appl. Opt. 8, 1577–1580 (1969). [CrossRef] [PubMed]
  4. M. King, W. R. Bennett, M. Aerm, “Real-time electrooptical signal processors with coherent detection,” Appl. Opt. 6, 1367–1375 (1967). [CrossRef] [PubMed]
  5. E. H. Young, B. A. Morris, R. V. Balfatto, “Acousto-optic interferometrical spectrum analyzer with direct rf frequency output,” in Optical Information Processing II, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.639, 140–144 (1986).
  6. I. C. Chang, R. Lu, L. S. Lee, “High dynamic range acousto-optic receiver,” in Optical Technology for Microwave Applications II, S. Yao, ed, Proc. Soc. Photo-Opt. Instrum. Eng.545, 95–101 (1985).
  7. M. D. Koonyz, “Miniature interferometric spectrum analyzer,” in Optical Information Processing II, D. R. Pape, ed., Proc. Soc. Photo-Opt. Instrum. Eng.639, 126–130 (1986).
  8. G. D. Xu, C. S. Tsai, “A novel integrated acoustooptic and electrooptic heterodyning device in a LiNbO3 waveguide,” Appl. Phys. Lett. 58, 28–30 (1991). [CrossRef]
  9. D. Y. Zang, C. S. Tsai, “Single mode waveguide microlenses and microlens array fabrication in LiNbO3 using TIPE technique,” Appl. Phys. Lett. 40, 703–705 (1985); “Titanium-indiffused proton-exchanged waveguide lenses in LiNbO3 for optical information processing,” Appl. Opt. 25, 2264–2272 (1986). [CrossRef] [PubMed]
  10. A. M. Glass, “The photorefractive effect,” Opt. Eng. 17, 470–479 (1978).
  11. C. C. Lee, K. Y. Liao, C. L. Chang, C. S. Tsai, “Wide-band guided-wave acoustooptic Bragg deflector using a tilted-finger chirp transducer,” IEEE J. Quantum Electron. QE-15, 1166–1170 (1979).
  12. C. S. Tsai, “Guided-wave acoustooptic Bragg modulators for wide-band integrated optic communications and signal processing,” IEEE Trans. Circuits Syst. CAS-26, 1072–1098 (1979), and the many references cited in Guided-Wave Acousto-Optics, C.S. Tsai, ed., Vol. 23 of Springer-Verlag Series on Electronics and Photonics (Springer-Verlag, Berlin, 1990). [CrossRef]
  13. G. I. Harakoshi, S. I. Tanaka, “Grating lenses for integrated optics,” Opt. Lett. 2, 142–144 (1978). [CrossRef]
  14. G. D. Xu, G. S. Tsai, “Integrated acoustooptic modules for interferometric RF spectrum analyzers,” IEEE Photon. Technol. Lett. 3, 153–155 (1991). [CrossRef]
  15. S. K. Yao, D. E. Thompson, “Chirp-grating lens for guided-wave optics,” Appl. Phys. Lett. 33, 635–637 (1978). [CrossRef]
  16. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973). [CrossRef]
  17. T. Suhara, H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. QE-22, 845–867 (1986). [CrossRef]
  18. T. Tamir, ed, Integrated Optics (Springer-Verlag, Berlin, 1975).
  19. R. V. Schmidt, I. P. Kaminow, “Metal diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25, 458–460 (1974). [CrossRef]
  20. A. M. Glass, I. P. Kaminow, A. A. Ballman, D. H. Olsson, “Absorption loss and photorefractive-index changes in Ti:LiNbO3 substrates and waveguides,” Appl. Opt. 19, 276–281 (1980). [CrossRef] [PubMed]
  21. J. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982). [CrossRef]
  22. M. Goodwin, C. Stewart, “Proton-exchanged optical waveguides in Y-cut lithum niobate,” Electron. Lett. 19, 223–225 (1983). [CrossRef]
  23. T. Q. Vu, J. A. Norris, C. S. Tsai, “Formation of negative index-change waveguide lenses in LiNbO3 using ion milling,” Opt. Lett. 13, 1141–1143 (1988). [CrossRef] [PubMed]
  24. H. I. Smith, F. J. Bachner, N. Efremow, “A high-yield photolithographic technique for surface wave devices,” J. Electrochem. Soc. 118, 821–825 (1971). [CrossRef]
  25. D. L. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason. SU-24, 7–18 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited