OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 25 — Sep. 1, 1992
  • pp: 5292–5298

Modal coupling analysis for integrated optical components in glass and lithium niobate

J. Liñares, G. C. Righini, and J. E. Alvarellos  »View Author Affiliations


Applied Optics, Vol. 31, Issue 25, pp. 5292-5298 (1992)
http://dx.doi.org/10.1364/AO.31.005292


View Full Text Article

Enhanced HTML    Acrobat PDF (787 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coupling efficiency between the fundamental modes of two different graded-index waveguides, which are fabricated in glass or lithium niobate, is calculated by numerical and variational methods. Analytical results are derived by the variational approach, which supplies a systematic method for studying the influence of modal coupling on the design of integrated optical components.

© 1992 Optical Society of America

History
Original Manuscript: October 24, 1991
Published: September 1, 1992

Citation
J. Liñares, G. C. Righini, and J. E. Alvarellos, "Modal coupling analysis for integrated optical components in glass and lithium niobate," Appl. Opt. 31, 5292-5298 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-25-5292


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Ulrich, “Theory of prism-film coupler by plane-wave analysis,” J. Opt. Soc. Am. 60, 1337–1350 (1970). [CrossRef]
  2. H. Stoll, A. Yariv, “Coupled mode analysis of periodic dielectric waveguides,” Opt. Commun. 8, 5–8 (1973). [CrossRef]
  3. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973). [CrossRef]
  4. R. P. Kenan, “Theory of diffraction of guided optical waves by thick holograms,” J. Appl. Phys. 46, 4545–4551 (1975). [CrossRef]
  5. D. Marcuse, “Coupled-mode theory for anisotropic optical waveguides,” Bell Syst. Tech. J. 54, 985–995 (1975).
  6. P. G. Suchoski, R. V. Ramaswamy, “Design of single-mode step-tapered waveguide sections,” IEEE J. Quantum Electron. QE-23, 205–211 (1987). [CrossRef]
  7. H. Zhenguang, R. Srivastava, R. V. Ramaswamy, “Low-loss small-mode passive waveguides and near-adiabatic tapers in BK7 glass,” IEEE J. Lightwave Technol. LT-7, 1590–1596 (1989). [CrossRef]
  8. G. P. Bava, P. Rosina, I. Montrosset, “Numerical analysis of planar Fresnel lenses,” J. Mod. Opt. 35, 863–869 (1988). [CrossRef]
  9. C. W. Pitt, S. Reid, S. Reynolds, J. Skinner, “Waveguide Fresnel lenses: modelling and fabrication,” J. Mod. Opt. 35, 1079–1111 (1988). [CrossRef]
  10. G. C. Righini, G. Belli, M. Varasi, A. Vannucci, “Waveguide Fresnel lenses for integrated optical processors,” in Integrated Optics and Optoelectronics, L. McCaughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1177, 209–215 (1989).
  11. G. C. Righini, J. Linares, J. E. Alvarellos, “Modal coupling optimization of integrated optical devices in LiNbO3,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1319, 110–111 (1990).
  12. G. Perrone, I. Montrosset, “A correction to the two-dimensional BPM for the analysis of waveguide lenses,” J. Mod. Opt. (to be published).
  13. J. Linares, J. E. Alvarellos, G. C. Righini, “Efficiency of modal coupling between graded-index optical waveguides,” J. Mod. Opt. 38, 2177–2187 (1991). [CrossRef]
  14. G. H. Chartier, P. J. R. Laybourn, A. Girod, “Masking process for double-ion-exchanged glass optical waveguides,” Electron. Lett. 22, 925–926 (1986). [CrossRef]
  15. G. C. Righini, R. Shen, G. Belli, P. Boffi, A. Losacco, P. Mazzoldi, G. Battaglin, “Integrated optical components fabricated by two-step ion-exchange,” in Glasses for Optoelectronics, G. C. Righini, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1128, 103–109 (1989).
  16. D. Y. Zang, C. S. Tsai, “Single-mode waveguide microlenses and microlens array fabrication in LiNbO3 using titanium indiffused proton exchanged technique,” Appl. Phys. Lett. 46, 703–705 (1985). [CrossRef]
  17. C. S. Tsai, “Integrated-optical device modules in LiNbO3 for computing and signal processing,” J. Mod. Opt. 35, 965–977 (1988). [CrossRef]
  18. S. A. Reid, M. Varasi, S. Reynolds, “Double dilute melt proton exchange Fresnel lenses for LiNbO3 optical waveguides,” J. Opt. Commun. 10, 67–73 (1989).
  19. K. R. Lagu, R. V. Ramaswamy, “Process and waveguide parameter relationships for the design of planar, silver ion-exchanged glass waveguides,” IEEE J. Lightwave Technol. LT-4, 176–181 (1986). [CrossRef]
  20. S. E. Koonin, Computational Physics (Benjamin/Cumming, Menlo Park, Calif., 1985).
  21. S. K. Korotki, W. J. Minford, L. L. Buhl, M. D. Divino, R. C. Alferness, “Mode size and method for estimating the propagation constant of single-mode Ti:LiNbO3 strip waveguides,” IEEE J. Quantum Electron. QE-18, 1796–1801 (1982). [CrossRef]
  22. J. Linares, R. de la Fuente, “Optimization of the optical interconnection between microlens and channel waveguide arrays,” Jpn. J. Appl. Phys. 29, L1335–L1337 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited