OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 31, Iss. 25 — Sep. 1, 1992
  • pp: 5350–5358

Application of the pulsed photothermal effect to fast surface temperature measurements

Thierry Loarer and Jean-Jacques Greffet  »View Author Affiliations

Applied Optics, Vol. 31, Issue 25, pp. 5350-5358 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (1183 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is well known that the accuracy of surface temperature measurements by optical means is limited because of the uncertainties that are associated with the emissivity and the reflected fluxes. The application of the photothermal effect produced by a chopped laser beam for surface temperature measurements has proved to be a valuable tool to avoid the errors that are due to the reflected fluxes. In this paper we show that a pulsed laser may also be used for the same purpose. Since the measurement is quite rapid, this technique allows measurements to be made on moving surfaces. We present a careful analysis of the role of the experimental parameters and also give typical results.

© 1992 Optical Society of America

Original Manuscript: May 9, 1991
Published: September 1, 1992

Thierry Loarer and Jean-Jacques Greffet, "Application of the pulsed photothermal effect to fast surface temperature measurements," Appl. Opt. 31, 5350-5358 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. C. Pyatt, “Some considerations of the errors of brightness and two-colour types of spectral radiation pyrometer,” Br. J. Appl. Phys. 5, 264–268 (1954). [CrossRef]
  2. Y. S. Touloukian, D. P. DeWitt, Thermophysical Properties of Matter (IFI Plenum, New York, 1970), Vols. 7–9.
  3. R. E. Bedford, Temperature, Its Measurement and Control in Science and Industry (Reinhold, New York, 1972), Vol. 4.
  4. J-J. Greffet, T. Loarer, “Pyrométrie optique,” in Métrologie des Propriétés Thermophysiques des Matériaux, J. Hladik, ed. (Masson, Paris, 1990).
  5. T. Land, R. Barber, “New pyrometers for glass and other surfaces,” J. Soc. Glass Tech. 38, 45–53 (1954).
  6. P. Cielo, S. Dallaire, G. Lamonde, S. Johar, “Measurement of thermal inertia by the reflectivity-cavity method,” Can. J. Phys. 64, 1217–1220 (1986). [CrossRef]
  7. N. Harada, K. Imai, T. Yamada, E. Makabe, “New radiation thermometries using multiple reflection and their applications to color coating line and continuous annealing line,” in Proceedings of the Fifth Process Technology Conference on Measurement and Control Instrumentation in the Iron and Steel Industry (Iron and Steel Society-American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, 1985).
  8. D. P. De Witt, H. Kunz, “Theory and technique for surface temperature determinations by measuring the radiance temperatures and the absorptance ratio for two wavelengths,” in Temperature: Its Measurement and Control in Science and Industry, H. M. Plumb, ed. (Instrument Society of America, Pittsburgh, Pa., 1972).
  9. W. G. Fastie, “An emissivity independent radiation pyrometer,” J. Opt. Soc. Am 41, 872 (A) (1951). [CrossRef]
  10. D. Kelsall, “An automatic emissivity-compensated radiation pyrometer,” J. Sci. Instrum. 40, 1–4 (1963). [CrossRef]
  11. T. P. Murray, “Polaradiometer: a new instrument for temperature measurement,” Rev. Sci. Instrum. 38, 791–798 (1967). [CrossRef]
  12. J. E. Roney, “Steel surface temperature measurement in industrial furnaces by compensation for reflected radiation errors,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (Instrument Society of America, Pittsburgh, Pa., 1982), Vol. 5, p. 485.
  13. P. B. Coates, “Multiwavelength pyrometry,” Metrologia 17, 103–109 (1981). [CrossRef]
  14. J. L. Gardner, “Computer modelling of multiwavelength pyrometer for measuring true temperature,” High Temp. High Pressures 12, 699–705 (1980).
  15. J. L. Gardner, T. P. Jones, “Multiwavelength radiation pyrometry where reflectance is measured to estimate emissivity,” J. Phys. E 13, 306–310 (1980). [CrossRef]
  16. J. L. Gardner, T. P. Jones, W. G. Sainty, “Induced-transmission interference filter array for multiwavelength pyrometry,” Appl. Opt. 21, 1259–1261 (1982). [CrossRef] [PubMed]
  17. R. Ramelot, J. M. Ludovicy, C. Stolz, J. P. Fishbach, “Capteurs industriels pour applications basses températures,” Rev. Gen. Therm. 27, 517–524 (1988).
  18. G. Heitz, “Tôle-voûte deux miroirs. Mesure de température dans les fours de recuit continu,” Rev. Gen. Therm. 27, 511–515 (1988).
  19. O. Berthet, “Effet photothermique appliqué à la pyrométrie optique,” Thèse de doctorat (Ecole Centrale de Paris, 92295 Châtenay-Malabry Cedex, France, 1987).
  20. O. Berthet, J.-J. Greffet, “Pyrometry using photothermal effect,” in Proceedings of the International Conference on Heat Transfer (Hemisphere, New York, 1986).
  21. O. Berthet, J.-J. Greffet, Y. Denayrolles, “Procédé de mesure de la température d’un corps par détection optique et échauffement modulé,” Brevet Français d’Invention8,611,542 (8August1986); O. Berthet, J.-J. Greffet, Y. Denayrolles, European patentEP0262996 (7August1987); O. Berthet, J.-J. Greffet, Y. Denayrolles, U.S. patent71,082,549 (7August1987).
  22. T. Loarer, J.-J. Greffet, M. Huetz-Aubert, “Noncontact surface temperature measurement by means of a modulated photothermal effect,” Appl. Opt. 29, 979–987 (1990). [CrossRef] [PubMed]
  23. T. Loarer, “Mesure de température de surface par effet photothermique modulé ou impulsionnel,” Thèse de doctorat (Ecole Centrale Paris, 92295 Châtenay-Malabry Cedex, France, 1989).
  24. A. Degiovanni, “Diffusivité et méthode flash,” Rev. Gen. Therm. 16, 420–442 (1977).
  25. A. C. Tam, B. Sullivan, “Remote sensing of pulsed photothermal radiometry,” Appl. Phys. Lett. 43, 333–335 (1983). [CrossRef]
  26. D. L. Balageas, J. C. Krapez, P. Cielo, “Pulsed photothermal modeling of layered media,” J. Appl. Phys. 59, 348–357 (1986). [CrossRef]
  27. W. P. Leung, A. C. Tam, “Thermal conduction at a contact interface measured by pulsed photothermal radiometry,” J. Appl. Phys. 63, 4505–4510 (1988). [CrossRef]
  28. W. P. Leung, A. C. Tam, “Techniques of flash radiometry,” J. Appl. Phys. 56, 153–161 (1984). [CrossRef]
  29. R. E. Imhof, D. J. S. Birch, F. R. Thornley, J. R. Gilchrist, T. A. Strivens, “Optothermal transient emission radiometry,” J. Phys. E 17, 521–525 (1984). [CrossRef]
  30. J. L. Gardner, “Effective wavelength for multicolor pyrometry,” Appl. Opt. 19, 3088–3091 (1980) [CrossRef] [PubMed]
  31. J. Bezemer, “Spectral sensitivity corrections for optical standard pyrometers,” Metrologia 10, 47–52 (1974). [CrossRef]
  32. P. B. Coates, “Wavelength specification in optical and photoelectric pyrometry,” 13, 1–5 (1977).
  33. J. W. Hahn, C. Rhee, “Reference wavelength method for two-color pyrometry,” Appl. Opt. 26, 5276–5279 (1987). [CrossRef] [PubMed]
  34. J. W. Hahn, C. Rhee, “Calculation of temperature error in a two-color pyrometer designed with the reference wavelength methods,” Appl. Opt. 27, 1916–1918 (1988) [CrossRef] [PubMed]
  35. H. S. Carslaw, J. C. Jaegger, Conduction of Heat in Solids (Oxford U. Press, New York, 1954).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited