OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 25 — Sep. 1, 1992
  • pp: 5359–5365

Orientational averaging of light-scattering observables in the T-matrix approach

Nikolai G. Khlebtsov  »View Author Affiliations


Applied Optics, Vol. 31, Issue 25, pp. 5359-5365 (1992)
http://dx.doi.org/10.1364/AO.31.005359


View Full Text Article

Enhanced HTML    Acrobat PDF (814 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The formalism of the quantum theory of angular momentum is used for orientational averaging of the T matrix, the Hermitian tensor T + T, and the direct product T*νν′Tμμ′. These results are independent of the nature of waves and scatterers. Equations for 〈 T〉 and 〈 T + T〉 are interpreted as specific forms of the generalized Wigner–Eckart theorem for the matrix elements of operators T and T + T, which are calculated in terms of symmetrical top eigenfunctions. The averaged values of the above three types of tensor are used for the analytical calculation of a complete set of incoherent light-scattering observables, i.e., the total scattering and extinction cross sections and the Mueller matrix elements.

© 1992 Optical Society of America

History
Original Manuscript: June 5, 1990
Published: September 1, 1992

Citation
Nikolai G. Khlebtsov, "Orientational averaging of light-scattering observables in the T-matrix approach," Appl. Opt. 31, 5359-5365 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-25-5359


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971). [CrossRef]
  2. B. Peterson, S. Ström, “T-matrix for electromagnetic scattering from an arbitrary number of scatterers and representation of E (3),” Phys. Rev. D 8, 3661–3678 (1973). [CrossRef]
  3. P. W. Barber, C. Yeh, “Scattering of electromagnetic waves by arbitrary shaped dielectric bodies,” Appl. Opt. 14, 2864–2872 (1975). [CrossRef] [PubMed]
  4. V. K. Varadan, V. V. Varadan, eds., Acoustic, Electromagnetic, and Elastic Wave Scattering: Focus on the T-matrix Approach (Pergamon, New York, 1980).
  5. M. F. Iskander, A. Lakhtakia, “Extension of the iterative EBCM to calculate scattering by low-loss or lossless elongated dielectric objects,” Appl. Opt. 23, 948–953 (1984). [CrossRef] [PubMed]
  6. V.Twersky Twersky, “Coherent electromagnetic waves in pair-correlated random distributions of aligned scatterers,” J. Math. Phys. 19, 215–230 (1978). [CrossRef]
  7. Y. Ma, V. V. Varadan, V. K. Varadan, “Scattered intensity of a wave propagating in a discrete random medium,” Appl. Opt. 27, 2469–2477 (1988). [CrossRef] [PubMed]
  8. V. V. Varadan, V. K. Varadan, Y. Ma, W. A. Steele, “Effects of nonspherical statistics on EM wave propagation in discrete random media,” Radio Sci. 22, 491–498 (1987). [CrossRef]
  9. V. K. Varadan, Y. Ma, V. V. Varadan, “Scattering and attenuation of elastic waves in random media,” Pure Appl. Geophys. 131, 577–603 (1989). [CrossRef]
  10. P. E. Geller, T. G. Tsuei, P. W. Barber, “Information content of the scattering matrix for spheroidal particles,” Appl. Opt. 24, 2391–2396 (1985). [CrossRef] [PubMed]
  11. V. N. Lopatin, F. Ya. Sidko, Introduction to Optics of Cell Suspensions (Nauka, Novosibirsk, 1988).
  12. E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973). [CrossRef]
  13. S. B. Singham, C. F. Bohren, “Hybrid method in light scattering by an arbitrary particle,” Appl. Opt. 28, 517–522 (1989). [CrossRef] [PubMed]
  14. M. K.Singham Singham, S. B.Singham Singham, G. Salzman, “The scattering matrix for randomly oriented particles,” J. Chem. Phys. 85, 3807–3815 (1986). [CrossRef]
  15. W. M. McClain, W. A. Ghoul, “Elastic light scattering by randomly oriented macromolecules: computation of the complete set of observables,” J. Chem. Phys. 84, 6609–6622 (1986). [CrossRef]
  16. V. V. Varadan, V. K. Varadan, “Multiple scattering of electromagnetic waves by randomly distributed and oriented dielectric scatterers,” Phys. Rev. D 21, 388–394 (1980). [CrossRef]
  17. V. K. Varadan, Y.Ma Ma, V. V. Varadan, “Coherent electromagnetic wave propagation through randomly distributed and oriented pair-correlated dielectric scatterers,” Radio Sci. 19, 1445–1449 (1984). [CrossRef]
  18. M. I. Mishchenko, “The interstellar absorption of light by randomly oriented nonspherical grains,” Pis’ma Astron. Zh. 15, 694–700 (1989); “Extinction of light by randomly-oriented non-spherical grains,” Astrophys. Space Sci. 164, 1–13 (1990).
  19. M. I. Mishchenko, “Calculation of Integral Characteristics of Light Scattering for Ensemble of Randomly Oriented Non-spherical Particles,” Kinem. Fiz. Nebes. Tel’ 6, 95–96 (1990).
  20. N. G. Khlebtsov, A. G. Melnikov, V. A. Bogatyrev, D. A. Borovsky, “The optical effects in disperse systems induced by external field: light scattering, linear dichroism, and birefringence,” in Optics of Sea and Atmosphere, F. Ya. Sid’ko, ed. (Academy of Sciences of the USSR, Krasnoyarsk, 1990), p. 168.
  21. N. G. Khlebtsov, “Orientational averaging of the light scattering observables in the T-matrix method,” Opt. Spektrosk. 71, 151–153 (1991).
  22. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  23. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  24. M. I. Mishchenko, “Light scattering by randomly oriented nonspherical particles,” J. Opt. Soc. Am. A 8, 871–882 (1991). [CrossRef]
  25. D. A. Varshalovich, A. N. Moskalev, V. K. Khersonsky, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975).
  26. L. D. Landau, E. M. Lifschitz, Quantum Mechanics. Nonrelativistic Theory (Nauka, Moscow, 1989).
  27. A. R. Edmonds, Angular Momentum in Quantum Mechanics (CERN, Geneva, 1955).
  28. R. Newton, Scattering theory of waves and particles (McGraw-Hill, New York, 1969).
  29. D. S. Saxon, “Tensor scattering matrix for the electromagnetic fields,” Phys. Rev. 100, 1771–1775 (1955). [CrossRef]
  30. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton U. Press, Princeton, N.J., 1957).
  31. P. C. Waterman, “New formulation of acoustic scattering,” J. Acoust. Soc. Am. 45, 1417–1429 (1969). [CrossRef]
  32. P. C. Waterman, “Matrix theory of elastic wave scattering,” J. Acoust. Soc. Am. 60, 567–580 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited