OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 31, Iss. 25 — Sep. 1, 1992
  • pp: 5380–5387

Plasmon resonances and near-field optical microscopy: a self-consistent theoretical model

C. Girard  »View Author Affiliations

Applied Optics, Vol. 31, Issue 25, pp. 5380-5387 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (906 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electromagnetic optical interactions between a small metal sphere and a metallic surface are studied by using a self-consistent approach in the presence of an external field. The intensity scattered by the metal particle is given for different polarizations of the incident field. This quantity, determined from a local treatment of the response function of the two interacting systems, exhibits a spatial dependence with respect to the approach distance close to that obtained from recent experimental studies. Moreover, at large separation, retardation effects included from a dipolar propagator give rise to pseudoperiodic oscillations such as the ones observed in reflection near-field optical microscopy. In the near-field range, plasmon modes of the whole system probe surface introduce narrow resonances in the scattered intensity versus the probe–sample separation.

© 1992 Optical Society of America

Original Manuscript: June 28, 1991
Published: September 1, 1992

C. Girard, "Plasmon resonances and near-field optical microscopy: a self-consistent theoretical model," Appl. Opt. 31, 5380-5387 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984). [CrossRef]
  2. U. Ch. Fischer, D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–462 (1989); D. W. Pohl, “Scanning near-field optical microscopy (SNOM),” Adv. Opt. Electron Microsc. 12, 243–312 (1991). [CrossRef] [PubMed]
  3. D. W. Pohl, W. Denk, U. Dürig, “Optical stethoscopy: imaging with λ/20,” in Micron and Submicron Integrated Circuit Metrology, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.565, 56–61 (1986).
  4. U. Dürig, D. W. Pohl, F. Rohner, “Near-field optical scanning microscopy,” J. Appl. Phys. 51, 3318–3327 (1986). [CrossRef]
  5. U. Ch. Fischer, “Optical characteristics of 0.1μ circular apertures in a metal film as light sources for ultramicroscopy,” J. Vac. Sci. Technol. B 3, 386–390 (1985). [CrossRef]
  6. E. Betzig, A. Harootunian, M. Isaacson, E. Kratschmer, “Near-field scanning optical microscopy (NSOM),” Biophys. J. 41, 269–279 (1986); A. Harootunian, E. Betzig, M. Isaacson, A. Lewis, “Super-resolution fluorescence near-field scanning microscopy, Appl. Phys. Lett. 49, 674–676 (1986). [CrossRef]
  7. E. Betzig, M. Isaacson, A. Lewis, “Collection mode near field scanning optical microscopy,” Appl. Phys. Lett. 51, 2088–2090 (1987); E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991). [CrossRef] [PubMed]
  8. R. C. Reddick, R. J. Warmack, T. L. Ferell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989). [CrossRef]
  9. D. Courjon, K. Sarayeddine, M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989). [CrossRef]
  10. F. de Fornel, J. P. Goudonnet, L. Salomon, E. Lesniewska, “An evanescent field optical microscope,” in Optical Storage and Scanning Technology, T. Wilson, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1139, 77–84 (1989).
  11. D. Courjon, J. M. Vigoureux, M. Spajer, K. Sarayeddine, S. Leblanc, “External and internal reflection near field microscopy: experiments and results,” Appl. Opt. 29, 3734–3740 (1990). [CrossRef] [PubMed]
  12. B. Labani, C. Girard, D. Courjon, D. Van Labeke, “Optical interaction between a dielectric tip and a nanometric lattice: implications for near-field microscopy,” J. Opt. Soc. Am. B 7, 936–941 (1990). [CrossRef]
  13. C. Girard, M. Spajer, “Model for reflection near field optical microscopy,” Appl. Opt. 29, 3726–3732 (1990). [CrossRef] [PubMed]
  14. C. Girard, D. Courjon, “Model for scanning tunneling optical microscopy: a microscopic self-consistent approach,” Phys. Rev. B42, 9340–9349 (1990).
  15. M. Meier, A. Wokaun, P. F. Liao, “Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B 2, 931–949 (1985). [CrossRef]
  16. A. Wokaun, “Surface enhancement of optical fields: mechanisms and applications,” Mol. Phys. 56, 1–33 (1985). [CrossRef]
  17. H. Abe, K. Manzel, W. Schulze, M. Moskovits, D. P. Dilella, “Surface-enhanced Raman spectroscopy of CO adsorbed on colloidal silver particles,” J. Chem. Phys. 74, 792–797 (1981). [CrossRef]
  18. A. Adams, P. K. Hansma, “Light emission from small metal particles and thin metal films excited by tunneling electrons,” Phys. Rev. B 23, 3597–3601 (1981). [CrossRef]
  19. M. J. Bloemer, J. G. Mantovani, J. P. Goudonnet, D. R. James, R. J. Warmack, T. L. Ferrel, “Observation of driven surface-plasmon modes in metal particulates above tunnel functions,” Phys. Rev. B 35, 5947–5954 (1987). [CrossRef]
  20. R. L. Hightower, C. B. Richardson, H. B. Lin, J. D. Eversole, A. J. Campillo, “Measurements of scattering of light from layered microspheres,” Opt. Lett. 13, 946–948 (1988). [CrossRef] [PubMed]
  21. P. K. Aravind, H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy,” Surf. Sci. 124, 506–528 (1983), and references therein. [CrossRef]
  22. H. Metiu, “Surface enhanced spectroscopy” Prog. Surf. Sci. 17, 153–320 (1984). [CrossRef]
  23. T. T. Takemori, M. Inoue, K. Ohtaka, “Optical response of a sphere coupled to a metal substrate,” J. Phys. Soc. Jpn. 56, 1587–1602 (1987). [CrossRef]
  24. C. Girard, C. Girardet, “Self-consistent interaction potential for a molecule adsorbed on a dielectric surface: a symmetric top molecule on an ionic crystal,” J. Chem. Phys. 86, 6531–6539 (1987). [CrossRef]
  25. A. M. Marvin, F. Toigo, “Van der Waals interaction between a point particle and a metallic surface,” Phys. Rev. A 25, 782–802 (1982). [CrossRef]
  26. T. S. Rahman, A. A. Maradudin, “Effect of surface roughness on the image potential,” Phys. Rev. B 21, 504–521 (1980). [CrossRef]
  27. G. S. Agarwal, D. N. Pattanayak, E. Wolf, “Electromagnetic fields in spatially dispersive media,” Phys. Rev. B 10, 1447–1473 (1974). [CrossRef]
  28. C. Girard, F. Hache, “Dynamical properties of molecules physisorbed on a metal particle,” Mol. Phys. 70, 811–824 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited