OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 31, Iss. 26 — Sep. 10, 1992
  • pp: 5614–5621

Optical processing based on conditional higher-order trinary modified signed-digit symbolic substitution

M. S. Alam, M. A. Karim, A. A. S. Awwal, and J. J. Westerkamp  »View Author Affiliations

Applied Optics, Vol. 31, Issue 26, pp. 5614-5621 (1992)

View Full Text Article

Acrobat PDF (1016 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Techniques for higher-order modified signed-digit trinary arithmetic by using optical symbolic substitution are presented. This method provides fast multibit computation by adopting a two-step symbolic-substitution scheme. Since more information is represented in fewer digits, this technique leads to a compact design. A content-addressable memory-based and a joint transform correlator-based optical implemention for the proposed technique are also presented.

© 1992 Optical Society of America

Original Manuscript: February 28, 1991
Published: September 10, 1992

M. S. Alam, M. A. Karim, A. A. S. Awwal, and J. J. Westerkamp, "Optical processing based on conditional higher-order trinary modified signed-digit symbolic substitution," Appl. Opt. 31, 5614-5621 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. K. Hwang, A. Louri, “Optical multiplication and division using modified signed-digit symbolic substitution,” Opt. Eng. 28, 364–372 (1989).
  2. T. K. Gaylord, M. M. Mirsalehi, C. C. Guest, “Optical digital truth-table look-up processing,” Opt. Eng. 24, 48–58 (1985).
  3. M. M. Mirsalehi, T. K. Gaylord, “Truth-table look-up parallel processing using an optical content-addressable memory,” Appl. Opt. 25, 2277–2283, (1986). [CrossRef] [PubMed]
  4. A. Hwang, Y. Tsunida, J. W. Goodman, S. Ishihara, “Optical computation using residue arithmetic,” Appl. Opt. 18, 149–162 (1979). [CrossRef]
  5. N. Takagi, H. Yasura, S. Yajima, “High speed VLSI multiplication algorithm with a redundant binary addition tree,” IEEE Trans. Comput. C-34, 789–795 (1985). [CrossRef]
  6. A. Avizienis, “Signed-digit number representation for fast parallel arithmetic,” IRE Trans. Electron. Comput. EC-10, 389–400 (1961). [CrossRef]
  7. B. L. Drake, R. P. Bocker, M. E. Lasher, T. B. Henderson, “Photonic computing using modified signed-digit number representation,” Opt. Eng. 25, 38–43 (1986).
  8. A. K. Cherri, M. A. Karim, “Modified signed-digit arithmetic using an efficient symbolic substitution,” Appl. Opt. 27, 3824–3827 (1988). [CrossRef] [PubMed]
  9. M. M. Mirsalehi, T. K. Gaylord, “Logical minimization of multilevel coded function,” Appl. Opt. 25, 3078–3088 (1986). [CrossRef] [PubMed]
  10. T. K. Gaylord, M. M. Mirsalehi, “Truth-table look-up processing: number representation, multilevel coding and logical minimization,” Opt. Eng. 25, 22–28 (1986).
  11. A. Huang, “Parallel algorithms for optical digital computers,” in Proceedings of the IEEE Tenth International Optical Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 13–17.
  12. K. H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054–3060 (1986). [CrossRef] [PubMed]
  13. R. P. Bocker, B. L. Drake, M. E. Lasher, T. B. Henderson, “Modified signed-digit addition and subtraction using optical symbolic substitution,” Appl. Opt. 25, 2456–2457 (1986). [CrossRef] [PubMed]
  14. Y. Li, G. Eichmann, “Conditional symbolic modified signed-digit arithmetic using optical content-addressable memory logic elements,” Appl. Opt. 26, 2328–2333 (1987). [CrossRef] [PubMed]
  15. S. P. Kozaitis, “Higher-ordered rules for symbolic substitution,” Opt. Commun. 65, 339–342 (1988). [CrossRef]
  16. G. Eichmann, A. Kostrzewski, D. H. Kim, Y. Li, “Optical higher-order symbolic recognition,” Appl. Opt. 29, pp. 2135–2147 (1990). [CrossRef] [PubMed]
  17. K. H. Brenner, A. W. Lohmann, T. K. Merklein, “Symbolic substitution implemented by spatial filtering logic,” Opt. Eng. 28, 390–395 (1989).
  18. E. Botha, D. Casasent, E. Barnhard, “Optical symbolic substitution using multichannel correlators,” Appl. Opt. 27, 817–818 (1987). [CrossRef]
  19. J. N. Mait, K. H. Brenner, “Optical symbolic substitution: system design using phase-only holograms,” Appl. Opt. 27, 1692–1700 (1988). [CrossRef] [PubMed]
  20. R. Thalmann, G. Pedrini, K. J. Weible, “Optical symbolic substitution using diffraction gratings,” Appl. Opt. 29, 2126–2134 (1990). [CrossRef] [PubMed]
  21. M. A. Karim, A. A. S. Awwal, Optical Computing An Introduction (Wiley, New York, 1992).
  22. A. K. Cherri, M. A. Karim, “Symbolic substitution based operations using holograms: multiplication and histogram equilization,” Opt. Eng. 28, 638–642 (1989).
  23. B. Javidi, C. Kuo, “Joint transform image correlation using a binary spatial light modulator at the Fourier plane,” Appl. Opt. 27, 663–665 (1988). [CrossRef] [PubMed]
  24. F. T. S. Yu, F. Cheng, T. Nagata, D. A. Gregory, “Effect of fringe binarization of multiobject joint transform correlation,” Appl. Opt. 28, 2988–2990 (1989). [CrossRef] [PubMed]
  25. M. S. Alam, M. A. Karim, A. A. S. Awwal, “Improved correlation discrimination using joint Fourier transform optical correlator,” Microwave Opt. Tech. Lett. 4, 103–106 (1991). [CrossRef]
  26. A. A. S. Awwal, M. A. Karim, “Polarization-encoded optical shadow-casting: design of a carry-free adder,” Appl. Opt. 28, 785–790 (1989). [CrossRef] [PubMed]
  27. A. K. Cherri, M. A. Karim, “Symbolic substitution based flagged arithmetic using polarization-encoded optical shadow-casting,” Opt. Commun. 70, 455–461 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited