OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 31, Iss. 28 — Oct. 1, 1992
  • pp: 6096–6101

Multichannel Fourier-transform infrared spectrometer

Mamoru Hashimoto and Satoshi Kawata  »View Author Affiliations

Applied Optics, Vol. 31, Issue 28, pp. 6096-6101 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (715 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact Fourier-transform IR spectrometer without a moving mechanism was developed. The spectrometer consists of a shearing interferometer for forming a spatially distributed interferogram and an IR array detector for observing the interferogram. The shearing interferometer of the developed system is a birefringent interferometer with a Savert plate; the IR array detector is a PtSi Schottky- barrier detector with 4096 elements. The optics and the system configuration are described in detail, and the experimental results of the IR absorption spectra of polystyrene and polyethylene terephthalate film are shown. The developed optics is as small as 20 × 6 cm ϕ in size. The spectral resolution of the prototype system is ~ 27.6 cm−1 between 5000 and 2000 cm−1. The methods and their possibilities of resolution improvement are also described.

© 1992 Optical Society of America

Original Manuscript: December 10, 1991
Published: October 1, 1992

Mamoru Hashimoto and Satoshi Kawata, "Multichannel Fourier-transform infrared spectrometer," Appl. Opt. 31, 6096-6101 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Talmi, R. W. Simpson, “Self-scanned array: a multichannel spectrometric detector,” Appl. Opt. 19, 1401–1414 (1980). [CrossRef] [PubMed]
  2. D. G. Jones, “Photodiode array detectors in UV–VIS spectroscopy,” Parts I and II, Anal. Chem. 57, 1057A–1073A; 1207A–1214A (1985).
  3. P. M. Epperson, J. V. Sweedler, R. B. Bilhom, G. R. Sims, M. B. Denton, “Applications of charge transfer devices in spectroscopy,” Anal. Chem. 60, 327A–335A (1988). [CrossRef]
  4. S. Minami, “Fourier transform spectroscopy using image sensors,” Michrochim. Acta (Wien) 3, 309–324 (1987). [CrossRef]
  5. T. Okamoto, S. Kawata, S. Minami, “Fourier transform spectrometer with a self-scanning photodiode array,” Appl. Opt. 23, 269–273 (1984). [CrossRef] [PubMed]
  6. H. Aryamanya-Mugisha, R. R. Williams, “A Fourier transform diode array spectrometer for the UV, visible, and near-IR,” Appl. Spectrosc. 39, 693–697 (1985). [CrossRef]
  7. T. Okamoto, S. Kawata, S. Minami, “A photodiode array Fourier transform spectrometer based on a birefringent interferometer,” Appl. Spectrosc. 40, 691–695 (1986). [CrossRef]
  8. S. Kawata, Y. Inoue, S. Minami, “Compact multichannel FTIR-sensor with a Savert-plate interferometer,” in Seventh International Conference on Fourier Transform Spectroscopy, D. G. Cameron, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1145, 567–568 (1989). [CrossRef]
  9. T. H. Barnes, “Photodiode array Fourier transform spectrometer with improved dynamic range,” Appl. Opt. 24, 3702–3706 (1985). [CrossRef] [PubMed]
  10. J. V. Sweedler, M. B. Denton, “Spatially encoded Fourier transform spectroscopy in the ultraviolet to near-infrared,” Appl. Spectrosc. 43, 1378–1384 (1989). [CrossRef]
  11. J. V. Sweedler, R. D. Jalkian, G. R. Sims, M. B. Denton, “Crossed interferometric dispersive spectroscopy,” Appl. Spectrosc. 44, 14–20 (1990). [CrossRef]
  12. T. Okamoto, S. Kawata, S. Minami, “Optical method for resolution enhancement in photodiode array Fourier transform spectroscopy,” Appl. Opt. 24, 4221–4225 (1985). [CrossRef] [PubMed]
  13. T. H. Barnes, T. Eiji, K. Matsuda, “Heterodyned photodiode array Fourier transform spectrometer,” Appl. Opt. 25, 1864–1866 (1986). [CrossRef] [PubMed]
  14. S. Kawata, K. Minami, S. Minami, “Superresolution of Fourier transform spectroscopy data by the maximum entropy method,” Appl. Opt. 22, 3593–3598 (1983). [CrossRef] [PubMed]
  15. K. Minami, S. Kawata, S. Minami, “Superresolution of Fourier transform spectra by autoregressive model fitting with singular value decomposition,” Appl. Opt. 24, 162–167 (1985). [CrossRef] [PubMed]
  16. K. Vural, “Mercury cadmium telluride short- and medium-wavelength infrared staring focal plane arrays,” Opt. Eng. 26, 201–208 (1987).
  17. A. M. Fowler, R. G. Probst, J. P. Britt, R. R. Joyce, F. C. Gillett, “Evaluation of an indium antimonide hybrid focal plane array for ground-based infrared astronomy,” Opt. Eng. 26, 232–240 (1987).
  18. M. Kimata, M. Denda, N. Yutani, S. Iwade, N. Tsubouchi, “High density Schottky-barrier infrared image sensor,” in Infrared Detectors and Arrays, E. L. Dereniak, ed., Proc. Soc. Photo-Opt. Instrum. Eng.930, 11–25 (1988).
  19. L. R. Hudson, H. F. Tseng, W. L. Wang, G. P. Weckler, “Schottky-barrier infrared focal plane array for spectroscopic applications,” Opt. Eng. 26, 216–222 (1987).
  20. B. Maddoux, “Platinum silicide’s growing challenge,” Laser Optron. 8, 63–67 (1989).
  21. M. Denda, M. Kimata, S. Iwade, N. Yutani, T. Kondo, N. Tsubouchi, “4 × 4096-element SW IR multispectral focal plane array,” in Infrared Technology XIII, I. J. Spiro, ed., Proc. Soc. Photo-Opt. Instrum. Eng.819, 279–286 (1987).
  22. M. Françon, S. Mallick, Polarization Interferometers, (Wiley, New York, 1971), Chap. 2, p. 19.
  23. M. Françon, Optical Interferometry (Academic, New York, 1966), Chap. 7, p. 137.
  24. G. A. Vanasse, H. Sakai, “Fourier Spectroscopy,” in Progress in Optics VII, E. Wolf, ed. (North-Holland, Amsterdam, 1967), Chap. 7, pp. 261–330.
  25. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975), Chap. 7, p. 256.
  26. N. Yutani, M. Kimata, M. Denda, S. Iwade, N. Tsubouchi, “IrSi Schottky-barrier infrared image sensor,” in Proceedings of The International Electron Devices Meeting (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 124–127.
  27. M. Hashimoto, S. Kawata, “Signal to noise ratio of multi-channel Fourier-transform spectroscopy,” submitted to J. Spectrosc. Soc. Jpn.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited