OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 31, Iss. 30 — Oct. 20, 1992
  • pp: 6441–6445

Bending losses and beam profiles of zinc selenide-coated silver waveguides for carbon dioxide laser light

Yuji Matsuura and Mitsunobu Miyagi  »View Author Affiliations

Applied Optics, Vol. 31, Issue 30, pp. 6441-6445 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (544 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Circular hollow waveguides with an interior silver layer and an inner coating of zinc selenide are fabricated. The fabrication process for rf sputtering of zinc-selenide and silver, electroplating of nickel, and etching of a polyimide mandrel is described in detail. As a result of the measurements of transmission losses, the waveguides show a remarkably low-loss property when they are bent. Further, output beam profiles of the straight and the bent waveguide are investigated, and it is shown that the waveguide with a smaller diameter exhibits a well-shaped beam profile without sacrificing the low-loss property.

© 1992 Optical Society of America

Original Manuscript: November 22, 1991
Published: October 20, 1992

Yuji Matsuura and Mitsunobu Miyagi, "Bending losses and beam profiles of zinc selenide-coated silver waveguides for carbon dioxide laser light," Appl. Opt. 31, 6441-6445 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Garmire, T. McMahon, M. Bass, “Flexible infrared waveguides for high-power transmission,” IEEE J. Quantum Electron. QE-16, 23–32 (1980). [CrossRef]
  2. T. Hidaka, T. Morikawa, J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle-infrared region,” J. Appl. Phys. 52, 4467–4471 (1981). [CrossRef]
  3. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular hollow waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984). [CrossRef]
  4. S. J. Wilson, R. M. Jenkins, R. W. J. Devereux, “Hollow-core silica waveguides,” IEEE J. Quantum Electron. QE-23, 52–58 (1987). [CrossRef]
  5. J. A. Harrington, C. C. Gregory, “Hollow sapphire fibers for the delivery of CO2 laser energy,” Opt. Lett. 15, 541–543 (1990). [CrossRef] [PubMed]
  6. M. B. Levy, K. D. Laakmann, “Flexible waveguide for CO2 laser surgery,” in Optical and Laser Technology in Medicine, R. J. Landry, D. Sliney, R. Scott, eds., Proc. Soc. Photo-Opt. Instrum. Eng.605, 57–58 (1986).
  7. A. Hongo, K. Morosawa, T. Shiota, Y. Matsuura, M. Miyagi, “Transmission characteristics of germanium thin-film-coated metallic hollow waveguides for high-powered CO2 laser light,” IEEE J. Quantum Electron. 26, 1510–1515 (1990). [CrossRef]
  8. N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990). [CrossRef] [PubMed]
  9. H. Machida, H. Ishikawa, M. Miyagi, “Low-loss lead fluoride-coated square waveguides for CO2 laser light transmission,” Electron. Lett. 27, 2068–2070 (1991); A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, T. Hashimoto, “Transmission of kilowatt-class CO2 laser light through dielectric-coated metallic hollow waveguides for material processing,” Appl. Opt. 31, 5114–5120. [CrossRef] [PubMed]
  10. M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984). [CrossRef]
  11. S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991). [CrossRef]
  12. Y. Matsuura, M. Miyagi, A. Hongo, “Fabrication of low-loss zinc-selenide coated silver hollow waveguides for CO2 laser light,” J. Appl. Phys. 68, 5463–5466 (1990). [CrossRef]
  13. R. A. Dine-Hert, W. W. Wright, “Reaction of hydrazine hydrate with polyimide,” Chem. Ind. 86, 1565–1566 (1967).
  14. A. Saiki, K. Mukai, T. Okubo, S. Harada, “Fine pattern technology for multilevel metallization with PIQ insulation,” Trans. Inst. Electron. Inform. Commun. Eng. J63-C, 586–592 (1980).
  15. Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989). [CrossRef]
  16. S. S. Alimpiev, V. G. Artjushenko, L. N. Butvina, S. K. Vartapetov, E. M. Dianov, Yu. G. Kolesnikov, V. I. Konov, A. O. Nabatov, S. M. Nikiforov, M. M. Mirakjan, “Polycrystalline i.r. fibres for laser scalpels,” Int. J. Optelectronics 3, 333–344 (1988).
  17. T. Arai, M. Kikuchi, M. Saito, M. Takizawa, “Power transmission capacity of As-S glass fiber on CO laser delivery,” J. Appl. Phys. 63, 4359–4364 (1988). [CrossRef]
  18. Y. Matsuura, A. Hongo, M. Miyagi, “Dielectric-coated metallic hollow waveguide for 3-μm Er:YAG, 5-μm CO, and 10.6-μm CO2 laser light transmission,” Appl. Opt. 29, 2213–2214 (1990). [CrossRef] [PubMed]
  19. D. R. Hall, E. K. Gorton, R. M. Jenkins, “10-μm propagation losses in hollow dielectric waveguides,” J. Appl. Phys. 48, 1212–1216 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited