OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 31, Iss. 30 — Oct. 20, 1992
  • pp: 6446–6452

Verification of generalized telegraphist’s equations applied to dielectric waveguide problems

Lai-Ching L. So and Charles A. Lee  »View Author Affiliations

Applied Optics, Vol. 31, Issue 30, pp. 6446-6452 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (743 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple numerical method based on generalized telegraphist’s equations as a full vector–wave analysis tool for dielectric waveguide problems is presented. The method is applied to various guiding structures for single-mode and multimode computation. The generalized telegraphist’s equation formulates the problem as a matrix eigenvalue equation whose solution spectrum of eigenvalues directly gives the modal propagation constants. Accuracies of better than 0.08% are possible for calculating the propagation constants.

© 1992 Optical Society of America

Original Manuscript: June 18, 1991
Published: October 20, 1992

Lai-Ching L. So and Charles A. Lee, "Verification of generalized telegraphist’s equations applied to dielectric waveguide problems," Appl. Opt. 31, 6446-6452 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. A. J. Marcatilli, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2132 (1969).
  2. W. V. McLevige, T. Itoh, R. Mittra, “New waveguide structures for millimeter-wave and optical integrated circuits,” IEEE Trans. Microwave Theory Tech. MTT-29, 788–794 (1975). [CrossRef]
  3. M. D. Feit, J. A. Fleck, “Calculation of dispersion in graded-index multimode fibers by propagating-beam method,” Appl. Opt. 18, 2843–2851 (1979). [CrossRef] [PubMed]
  4. C. Yeh, W. P. Brown, R. Szejin, “Multimode inhomogeneous fiber couplers,” Appl. Opt. 18, 489–485 (1979). [CrossRef] [PubMed]
  5. J. E. Goell, “A circular-harmonic computer analysis of rectangular dielectric waveguides,” Bell Syst. Tech. J. 48, 2133–2160 (1969).
  6. R. Pregla, “A method for the analysis of coupled rectangular dielectric waveguides,” Arch. Elektron. Übertragung 28, 349–357 (1974).
  7. E. Schweig, W. B. Bridges, “Computer analysis of dielectric waveguides: a finite difference method,” IEEE Trans. Microwave Theory Tech. MTT-32, 531–541 (1984). [CrossRef]
  8. K. Bierwirth, N. Schulz, F. Arndt, “Finite-difference analysis of rectangular dielectric waveguide structures,” IEEE Trans. Microwave Theory Tech. MTT-34, 1104–1114 (1984).
  9. D. G. Corr, J. B. Davies, “Computer analysis of the fundamental and higher order modes in single and coupled microstrip,” IEEE Trans. Microwave Theory Tech. MT-20, 669–678 (1972). [CrossRef]
  10. S. Ahmed, P. Daly, “Finite-element methods for inhomogeneous waveguides,” Proc. Inst. Electr. Eng. 116, 1661–1664 (1969). [CrossRef]
  11. C. Yeh, S. B. Dong, W. Oliver, “Arbitrarily shaped inhomogeneous optical fiber or integrated optical waveguides,” J. Appl. Phys. 46, 2125–2129 (1975). [CrossRef]
  12. C. Yeh, K. Ha, S. B. Dong, W. P. Brown, “Single mode optical waveguides,” Appl. Opt. 18, 1490–1504 (1979). [CrossRef] [PubMed]
  13. L. Manía, T. Corzani, E. Valentinuzzi, “The finite element method in the analysis of optical waveguides,” in Proceedings of NATO Advance Study Institute on Integrated Optics: Physics and Applications (NATO, Brussels, Belgium, 1981), pp. 335–359.
  14. N. Mabaya, P. E. Lagasse, P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microwave Theory Tech. MTT-29, 600–605 (1981). [CrossRef]
  15. K. Hayata, M. Koshiba, M. Eguchi, M. Suzuki, “Vectorial finite-element method without any spurious solutions for dielectric waveguiding problems using transverse magnetic field component,” IEEE Trans. Microwave Theory Tech. MTT-34, 1120–1124 (1986). [CrossRef]
  16. S. A. Schelkunoff, “Conversion of Maxwell’s equations into generalized telegraphist’s equations,” Bell Syst. Tech. J. 34, 995–1043 (1955).
  17. S. A. Schelkunoff, “Generalized telegraphist’s equations for waveguides,” Bell Syst. Tech. J. 31, 784–801 (1952).
  18. K. Ogusu, “Numerical analysis of the rectangular dielectric waveguide and its modifications,” IEEE Trans. Microwave Theory Tech. MTT-25, 874–885 (1977). [CrossRef]
  19. H. Shinonaga, S. Kurazono, “Y dielectric waveguide for millimeter- and submillimeter-wave,” IEEE Trans. Microwave Theory Tech. MTT-29, 542–546 (1981). [CrossRef]
  20. S. M. Saad, “Review of numerical methods for the analysis of arbitrarily-shaped microwave and optical dielectric waveguides,” IEEE Trans. Microwave Theory Tech. MTT-33, 894–899 (1985). [CrossRef]
  21. F. L. Ng, “Tabulation of methods for the numerical solution of hollow waveguide problem,” IEEE Trans. Microwave Theory Tech. MTT-22, 322–329 (1974).
  22. J. B. Davies, “Review of methods for numerical solution of hollow-waveguide problem,” Proc. Inst. Electr. Eng. 119, 33–37 (1972). [CrossRef]
  23. C. Hafner, R. Ballisti, “Electromagnetic waves on cylindrical structures calculated by the method of moments and by the point matching technique,” in IEEE International Convention Digest on the AP-S Symposium (Institute of Electrical and Electronics Engineers, New York, 1981), pp. 331–333.
  24. N. Marcuvitz, Waveguide Handbook (McGraw-Hill, New York, 1986), Chap. 2. [CrossRef]
  25. L.-C. So, “Numerical analysis of optical dielectric waveguides and modulators, Ph.D. dissertation (Cornell University, Ithaca, N.Y., 1991), Chap. 3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited