OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 30 — Oct. 20, 1992
  • pp: 6475–6484

Frequency fidelity of a compact CO2 Doppler lidar transmitter

G. N. Pearson and B. J. Rye  »View Author Affiliations


Applied Optics, Vol. 31, Issue 30, pp. 6475-6484 (1992)
http://dx.doi.org/10.1364/AO.31.006475


View Full Text Article

Enhanced HTML    Acrobat PDF (1312 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The cw, interpulse, and intrapulse frequency stabilities of a compact, sealed-off CO2 Doppler lidar transmitter are characterized. A cw stability of 1 part in 5 × 1011 for 1-s averaging times, maximum pulse-to-pulse frequency deviations of ±49 kHz for periods of seconds at a pulse repetition frequency of 1 kHz, and pulses with low-frequency chirp are demonstrated in a instrument suitable for the field.

© 1992 Optical Society of America

History
Original Manuscript: September 17, 1991
Published: October 20, 1992

Citation
G. N. Pearson and B. J. Rye, "Frequency fidelity of a compact CO2 Doppler lidar transmitter," Appl. Opt. 31, 6475-6484 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-30-6475


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. R. Lawrence, R. M. Hardesty, M. J. Post, R. A. Richter, R. M. Huffaker, F. F. Hall, “Performance characteristics of the NOAA pulsed Doppler lidar and its application to atmospheric measurements,” in Fifth Symposium on Metrological Observations and Instrumentation (American Meteorological Society, Boston, Mass., 1983), pp. 481–487.
  2. J. Rothermel, C. Kessinger, D. L. Davis, “Dual-Doppler lidar measurements of winds in the JAWS experiment,” J. Atmos. Oceanogr. Tech. 2, 138–147 (1985). [CrossRef]
  3. C. A. DiMarzio, J. W. Bilbro, “An airborne Doppler lidar,” NASA Conf. Publ. 2138, 529–540 (1980).
  4. J. L. Lachambre, P. Lavigne, M. Verreault, G. Otis, “Frequency and amplitude characteristics of a high repetition rate TEA-CO2 laser,” IEEE J. Quantum Electron. QE-14, 170–177 (1978). [CrossRef]
  5. P. W. Pace, J. M. Cruickshank, “A frequency stabilized compact high repetition rate TEA-CO2 laser,” IEEE J. Quantum Electron. QE-16, 937–944 (1980). [CrossRef]
  6. M. R. Harris, D. V. Willets, “Acoustic phenomena associated with a TEA laser discharge,” J. Phys. D 16, 125–133 (1983). [CrossRef]
  7. P. K. Gupta, R. G. Harrison, “Frequency stable long pulse operation of a self sustained TE CO2 laser,” Opt. Commun. 74, 318–320 (1990). [CrossRef]
  8. B. T. Upchurch, D. R. Schryer, K. G. Brown, E. J. Kielin, G. B. Hoflund, S. D. Gardener, “Recent advances in CO2 laser catalysts,” in Laser Radar VI, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1416, 21–29 (1991).
  9. D. V. Willets, M. R. Harris, “Homogeneous catalysis for CO2 lasers,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 33–34.
  10. A. A. Woodfield, J. M. Vaughan, “Airspeed and wind shear measurements with an airborne CO2 cw laser,” Int. J. Aviat. Safety 1, 207–209 (1983).
  11. J. L. Gras, W. D. Jones, “Australian aerosol backscatter survey,” Appl. Opt. 28, 852–856 (1989). [CrossRef] [PubMed]
  12. S. W. Henderson, C. P. Hale, P. J. M. Suni, J. R. Magee, “Solid-state coherent laser radar technology at 2 μm: current status and future prospects,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), pp. 92–94.
  13. C. P. Hale, S. W. Henderson, J. R. Magee, S. R. Vetorino, “Compact high energy ND:YAG coherent laser radar transceiver,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1991), pp. 133–135.
  14. S. Marcus, J. W. Caunt, “Compact CO2 laser for infrared heterodyne radar,” Rev. Sci. Instrum. 49, 1410–1412 (1978). [CrossRef] [PubMed]
  15. E. Arimondo, E. Menchi, “Analysis of Q-switch in a CO2 laser with a saturable absorber,” Appl. Phys. B 37, 55–61 (1985). [CrossRef]
  16. S. Marcus, D. T. Stein, “Piezoelectric Q-switching of a CO2 laser,” Rev. Sci. Instrum. 58, 128–130 (1987). [CrossRef]
  17. L. M. Laughman, R. J. Wayne, C. R. Lane, “Programmable transmitters for coherent laser radars,” in Physics and Technology of Coherent Infrared Radar I, R. C. Harney, ed., Proc. Soc. Photo-Opt. Instrum. Eng.300, 163–172 (1981).
  18. S. Marcus, G. M. Carter, “Electrooptically Q-switched CO2 waveguide laser,” Appl. Opt. 18, 2824–2826 (1979). [CrossRef] [PubMed]
  19. H. Ahlberg, S. Lundqvist, D. Letalick, I. Renhorn, O. Steinvall, “Imaging Q-switched CO2 laser radar with heterodyne detection,” Appl. Opt. 25, 2891–2897 (1986). [CrossRef] [PubMed]
  20. R. C. Hollins, D. L. Jordan, “Electro-optic frequency shifts in a Q-switched CO2 laser,” J. Phys. D 17, 1327–1334 (1984). [CrossRef]
  21. R. L. Shoemaker, R. E. Scotti, B. Comaskey, J. M. Soto, “Frequency-switchable CO2 laser: design and performance,” Appl. Opt. 21, 961–965 (1982). [CrossRef] [PubMed]
  22. R. C. Harney, “Laser prf considerations in differential absorption applications,” Appl. Opt. 22, 3747–3750 (1983). [CrossRef] [PubMed]
  23. G. N. Pearson, B. J. Rye, R. M. Hardesty, “Design of a high prf CO2 Doppler lidar for atmospheric monitoring,” in Laser Radar V, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1222, 143–147 (1990).
  24. G. N. Pearson, “Design and performance of a compact CO2 Doppler lidar transmitter,” in Laser Radar VI, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1416, 147–150 (1991).
  25. A. D. Colley, K. M. Abramski, H. J. Baker, D. R. Hall, “Discharge-induced modulation of RF excited CO2 waveguide lasers,” IEEE J. Quantum Electron. QE-27, 1939–1945 (1991). [CrossRef]
  26. M. J. Padgett, N. Bett, R. J. Butcher, “A simple frequency discriminator circuit for offset locking of lasers,” J. Phys. E 21, 554–557 (1988). [CrossRef]
  27. K. M. Abramski, A. D. Colley, H. J. Baker, D. R. Hall, “Offset frequency stabilization of RF excited waveguide CO2 laser arrays,” IEEE J. Quantum Electron. QE-26, 711–717 (1990). [CrossRef]
  28. J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler, “Characterisation of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105–110 (1971). [CrossRef]
  29. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE. 54, 221–230 (1966). [CrossRef]
  30. C. Freed, R. G. O’Donnell, “Advances in “laser CO2 stabilisation using the 4.3 μm fluorescence technique,” Metrologia 13, 151–156 (1977). [CrossRef]
  31. V. I. Tatarskii, Wave Propagation in Turbulent Medium, R. A. Silverman, translator (Dover, New York, 1967).
  32. L. J. Sullivan, “Infrared coherent radar,” in CO2 Laser Devices and Applications, T. S. Hartwick, ed., Proc. Soc. Photo-Opt. Instrum. Eng.227, 148–161 (1980).
  33. M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited