OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 30 — Oct. 20, 1992
  • pp: 6485–6490

Ice-cloud depolarization of backscatter for CO2 and other infrared lidars

Wynn L. Eberhard  »View Author Affiliations


Applied Optics, Vol. 31, Issue 30, pp. 6485-6490 (1992)
http://dx.doi.org/10.1364/AO.31.006485


View Full Text Article

Enhanced HTML    Acrobat PDF (876 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The depolarization of backscatter from ice particles at the CO2 lidar wavelength of 10.59 μm was investigated through field measurements, with simultanous depolarization measurements taken at 0.6943 μm for comparison. The depolarization ratio at the infrared wavelength was usually at or below the lidar’s sensitivity limit of 0.01, which is dramatically smaller than the typical 0.5 linear depolarization ratio for short-wave lidars. This behavior is explained by the strong absorption of ice at the infrared wavelength. Depolarization measurements at a 10.59-μm wavelength cannot discriminate between ice and water clouds in the manner of short-wave lidars. A possibility exists for more prominent depolarization at shorter CO2 lidar wavelengths (e.g., 9.115 μm), but additional research is required. Depolarization at the 2.09-μm wavelength is predicted to be substantial and useful for hydrometeor observations.

© 1992 Optical Society of America

History
Original Manuscript: December 27, 1991
Published: October 20, 1992

Citation
Wynn L. Eberhard, "Ice-cloud depolarization of backscatter for CO2 and other infrared lidars," Appl. Opt. 31, 6485-6490 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-30-6485


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Schotland, K. Sassen, R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971). [CrossRef]
  2. S. R. Pal, A. I. Carswell, “Polarization properties of lidar backscattering from clouds,” Appl. Opt. 12, 1530–1535 (1973). [CrossRef] [PubMed]
  3. K. Sassen, “Lidar observations of high plains thunderstorm precipitation,” J. Atmos. Sci. 34, 1444–1457 (1977). [CrossRef]
  4. K. Sassen, “Air-truth lidar polarization studies of orographic clouds,” J. Appl. Meteorol. 17, 73–91 (1978). [CrossRef]
  5. K. Sassen, “Deep orographic cloud structure and composition derived from comprehensive remote sensing measurements,” J. Climate Appl. Meteorol. 23, 568–583 (1984). [CrossRef]
  6. K. Sassen, A. W. Huggins, A. B. Long, J. B. Snider, R. J. Meitin, “Investigations of a winter mountain storm in Utah. Part II: mesoscale structure, supercooled liquid water development, and precipitation processes,” J. Atmos. Sci. 47, 1323–1350 (1990). [CrossRef]
  7. V. E. Derr, N. L. Abshire, R. E. Cupp, G. T. McNice, “Depolarization of lidar returns from virga and source cloud,” J. Appl. Meteorol. 15, 1200–1203 (1976). [CrossRef]
  8. C. M. R. Platt, “Lidar observation of a mixed-phase cloud,” J. Appl. Meteorol. 16, 339–345 (1977). [CrossRef]
  9. C. M. R. Platt, N. L. Abshire, G. T. McNice, “Some microphysical properties of an ice cloud from lidar observations of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978). [CrossRef]
  10. J. D. Spinhirne, M. Z. Hansen, J. Simpson, “The structure and phase of cloud tops as observed by polarization lidar,” J. Climate Appl. Meteorol. 22, 1319–1331 (1983). [CrossRef]
  11. O. Uchino, I. Tabata, K. Kai, Y. Okada, “Polarization properties of middle and high level clouds observed by lidar,” J. Meteorol. Soc. Jpn. 66, 607–616 (1988).
  12. R. J. Curran, panel chair, LAWS Instrument Panel Report (NASA, Washington, D.C., 1987), Vol. IIg.
  13. K. Sassen, “Infrared (10.6-μm) scattering and extinction in laboratory water and ice clouds,” Appl. Opt. 20, 185–193 (1981). [CrossRef] [PubMed]
  14. A. Gross, M. J. Post, F. F. Hall, “Depolarization, backscatter, and attenuation of CO2 lidar by cirrus clouds,” Appl. Opt. 23, 2518–2522 (1984). [CrossRef] [PubMed]
  15. W. L. Eberhard, T. Uttal, J. M. Intrieri, R. J. Willis, “Cloud parameters from IR lidar and other instruments: CLARET design and preliminary results,” in Preprints, Seventh Conference on Atmospheric Radiation (American Meteorological Society, Boston, Mass., 1990), pp. 343–348.
  16. M. J. Post, R. E. Cupp, “Optimizing a pulsed doppler lidar,” Appl. Opt. 29, 4145–4158 (1990). [CrossRef] [PubMed]
  17. W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurements of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989). [CrossRef]
  18. W. L. Eberhard, G. T. McNice, “Versatile lidar for atmospheric studies, including plume dispersion, clouds, and stratospheric aerosol,” J. Atmos. Oceanic Technol. 3, 614–622 (1986). [CrossRef]
  19. B. J. Mason, The Physics of Clouds (Clarendon, Oxford, 1971).
  20. Q. Cai, K.-N. Liou, “Polarized light scattering by hexagonal ice crystals,” Appl. Opt. 21, 3569–3580 (1972). [CrossRef]
  21. K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part I: angular scattering patterns,” J. Atmos. Sci. 36, 838–851 (1979). [CrossRef]
  22. K. Sassen, K. N. Liou, “Scattering of polarized laser light by water droplet, mixed-phase and ice crystal clouds. Part II: angular depolarizing and multiple-scattering behavior,” J. Atmos. Sci. 36, 852–861 (1979). [CrossRef]
  23. K. N. Liou, H. Lahore, “Laser sensing of cloud composition: a backscattered depolarization technique,” J. Appl. Meteorol. 13, 257–263 (1974). [CrossRef]
  24. C. E. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  25. J. A. Morrison, M.-J. Cross, “Scattering of a plane electromagnetic wave by axisymmetric raindrops,” Bell Syst. Tech. J. 53, 955–1019 (1974).
  26. S. Y. Matrosov, Y. M. Timofeyev, “Microwave attenuation and scattering characteristics of spheroidal raindrops,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 24, 808–811 (1988).
  27. S. Y. Matrosov, Cooperative Institute for Research in Environmental Sciences, Boulder, Colo. 80309 (personal communication).
  28. J. W. Bilbro, R. Jayroe, W. Baker, “Status of the laser atmospheric wind sounder,” in Technical Digest on Coherent Laser Radar: Technology and Applications, Vol. 12 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 238–241.
  29. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited