OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 31, Iss. 33 — Nov. 20, 1992
  • pp: 7046–7058

Generation of tunable subpicosecond pulses using low-Q dye cavities

Nguyen Dai Hung, P. Plaza, M. Martin, and Y. H. Meyer  »View Author Affiliations

Applied Optics, Vol. 31, Issue 33, pp. 7046-7058 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (1646 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The design and operation characteristics of a low-Q cavity dye laser chain pumped by a single laser (seeded Nd:YAG) for generating high-power tunable subpicosecond pulses are presented. Two low-Q short dye cavities in cascade pumped well above threshold followed by extracavity pulse shaping in a highly saturated absorber and amplifiers lead to stable generation of single 500-fs pulses, i.e., a pulse-shortening factor > 104 (from a smooth 6-ns pump pulse). Output pulse energies of 500 μJ (1-GW peak power) are produced from 40-mJ pump energy and used to generate high-power tunable subpicosecond pulses from 450 to 700 nm by supercontinuum generation, spectral selection, and amplification in dye amplifiers pumped by the same Nd:YAG laser. The spectral and time processes involved in these pulse-shortening methods are discussed with a rate-equation model.

© 1992 Optical Society of America

Original Manuscript: February 28, 1992
Published: November 20, 1992

Nguyen Dai Hung, P. Plaza, M. Martin, and Y. H. Meyer, "Generation of tunable subpicosecond pulses using low-Q dye cavities," Appl. Opt. 31, 7046-7058 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Kaiser, Ultrashort Laser Pulses and Applications, Vol. 60 of Topics in Applied Physics (Springer-Verlag, New York, 1988). [CrossRef]
  2. F. P. Schäfer, Dye Lasers, Vol. 1 of Topics in Applied Physics (Springer-Verlag, New York, 1990).
  3. F. J. Duarte, L. W. Hillman, “Dye laser principles,” in Quantum Electronics: Principles and Applications, P. F. Liao, P. L. Kelley, eds. (Academic, New York, 1990).
  4. D. Roess, “Giant pulse shortening by resonator transients,” J. Appl. Phys. 37, 2004–2006 (1966). [CrossRef]
  5. C. Lin, “Studies of relaxation oscillations in organic dye lasers,” IEEE J. Quantum Electron. QE-11, 602–609 (1975).
  6. C. Lin, C. V. Shank, “Subnanosecond tunable dye laser pulse generation by controlled resonator transient,” Appl. Phys. Lett. 26, 389–391 (1975). [CrossRef]
  7. G. W. Scott, J. H. Clark, M. A. Tolbert, S. P. Webb, A. J. Cox, G. Renz, “Simultaneous determination of the spectral and temporal properties of tunable, single, picosecond pulses from a short cavity dye laser,” IEEE J. Quantum Electron. QE-19, 544–550 (1983). [CrossRef]
  8. A. Eranian, P. Dezausier, O. de Witte, “2-nsec pulses from double cavity dye laser,” Opt. Commun. 7, 150–154 (1973). [CrossRef]
  9. F. P. Schäfer, L. Wenchong, S. Szatmari, “Short UV laser pulse generation by quenching of resonator transients,” Appl. Phys. B 32, 123–125 (1983). [CrossRef]
  10. C. V. Shank, J. E. Bjorkholm, H. Kogelnik, “Tunable distributed-feedback dye laser,” Appl. Phys. Lett. 18, 395–396 (1971). [CrossRef]
  11. H. Kogelnik, C. V. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18, 152–154 (1971). [CrossRef]
  12. M. M. Martin, E. Breheret, Y. H. Meyer, “Spectral dynamics in dye lasers: a new picosecond source,” Opt. Commun. 56, 61–66 (1985). [CrossRef]
  13. N. D. Hung, Y. H. Meyer, “Simple generation of 400–700 nm picosecond laser pumping,” Appl. Phys. B 53, 226–230 (1991). [CrossRef]
  14. Y. Miyazoe, M. Maeda, “On the spiking phenomena in organic dye laser,” IEEE J. Quantum Electron. QE-7, 36–37 (1971). [CrossRef]
  15. R. Wyatt, “Transient behaviour of pulsed dye lasers,” Appl. Phys. 21, 353–359 (1980). [CrossRef]
  16. R. Cubeddu, S. De Silvestry, O. Svelto, “Subnanosecond amplified spontaneous emission pulses by a nitrogen pumped dye laser,” Opt. Commun. 34, 460–462 (1980). [CrossRef]
  17. Y. Kawakatsu, K. Miyazaki, T. Hasama, T. Sato, “Generation of single short tunable UV pulses using a simple short cavity dye laser,” Appl. Opt. 25, 634–638 (1986). [CrossRef]
  18. P. H. Chiu, S. Hsu, S. J. C. Box, H. Kwok, “A cascade pumped picosecond dye laser system,” IEEE J. Quantum Electron. QE-20, 652–658 (1984). [CrossRef]
  19. A. J. Cox, C. D. Merrit, G. W. Scott, “Single mode, piezoelectrically tuned, picosecond short cavity dye laser,” Appl. Phys. Lett. 40, 664–666 (1982). [CrossRef]
  20. B. Fan, T. K. Gustafson, “Narrow band picosecond pulses from an ultrashort-cavity dye laser,” Appl. Phys. Lett. 28, 202–204 (1976). [CrossRef]
  21. H. Salzmann, H. Strohwald, “Single picosecond dye laser pulses by resonator transients,” Phys. Lett. A 57, 41–42 (1976). [CrossRef]
  22. Y. H. Meyer, M. M. Martin, E. Breheret, O. Benoist d’Azy, “Ultrashort dye laser pulses using the sweeping oscillator method,” in Ultrafast Phenomena V, G. L. Fleming, A. E. Siegman, eds. (Springer-Verlag, New York, 1986), pp. 89–91.
  23. Y. H. Meyer, M. M. Martin, F. Nesa, E. Bréhéret, “Picosecond pulses from UV to IR using a spectrotemporal selection dye laser,” J. Phys. 48, C7, 397–403 (1987).
  24. G. W. Scott, S. G. Shen, A. J. Cox, “Tunable subnanosecond pulses from short cavity dye laser systems pumped with a nitrogen-TEA laser,” Rev. Sci. Instrum. 55, 358–363 (1984). [CrossRef]
  25. F. Nesa, “Processus resonnants nonlinéaires dans les colorants: production d’impulsions laser subpicosecondes,” Ph.D. dissertation (University of Paris-Sud, Orsay, France, 1989).
  26. F. Nesa, M. M. Martin, Y. H. Meyer, “Laser pulse shortening to subpicosecond in extracavity dye solutions,” Opt. Commun. 75, 294–300 (1990). [CrossRef]
  27. E. P. Ippen, C. V. Shank, A. Bergman, “Picosecond recovery dynamics of malachite green,” Chem. Phys. Lett. 38, 611–614 (1976). [CrossRef]
  28. N. D. Hung, Y. H. Meyer, “Generation of powerful 1 picosecond dye laser pulses at two independently tunable wavelengths,” Appl. Phys. B 52, 67–70 (1991). [CrossRef]
  29. N. D. Hung, Y. H. Meyer, “A compact Fabry-Perot tuned 1 ps dye laser,” Opt. Commun. 79, 215–218 (1990). [CrossRef]
  30. Y. H. Meyer, P. Flamant, “A basic property of dye lasers: spectral evolution,” Opt. Commun. 19, 20–24 (1976). [CrossRef]
  31. M. M. Martin, P. Plaza, Y. H. Meyer, “Transient spectroscopy of triphenylmethane derivatives following subpicosecond irradiation,” Chem. Phys. 153, 297–303 (1991). [CrossRef]
  32. Y. H. Meyer, O. Benoist d’Azy, M. M. Martin, E. Bréhéret, “Spectral evolution of relaxation oscillations in dye lasers,” Opt. Commun. 60, 64–68 (1986). [CrossRef]
  33. J. H. Richardson, L. L. Steinmetz, B. W. Wallin, “Variable frequency sweeping of a dye laser,” Appl. Opt. 16, 1133–1135 (1977). [CrossRef] [PubMed]
  34. P. Juramy, P. Flamant, Y. H. Meyer, “Spectral properties of pulsed dye lasers,” IEEE J. Quantum Electron. QE-13, 855–865 (1977). [CrossRef]
  35. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986).
  36. P. Flamant, Y. H. Meyer, “Steady-state gain equation in a flashpumped dye amplifier,” Opt. Commun. 7, 146–149 (1973). [CrossRef]
  37. U. Ganiel, A. Hardy, G. Neumann, D. Treves, “Amplified spontaneous emission and signal amplification in dye-laser systems,” IEEE J. Quantum Electron. QE-11, 881–892 (1975). [CrossRef]
  38. J. B. Atkinson, F. P. Pace, “The spectral linewidth of a flashlamp-pumped dye laser,” IEEE J. Quantum Electron. QE-9, 569–574 (1973). [CrossRef]
  39. P. Sperber, A. Penzkofer, “So-Sn two-photon absorption dynamics of rhodamine dyes,” Opt. Quantum Electron. 18, 381–401 (1986). [CrossRef]
  40. D. Magde, S. T. Gaffney, B. F. Campbell, “Excited singlet absorption in blue laser dyes: measurement by picosecond flash photolysis,” IEEE J. Quantum Electron. QE-17, 489–495 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited