OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 4 — Feb. 1, 1992
  • pp: 497–503

Infrared-photodetector background-current estimation

Owen M. Williams  »View Author Affiliations


Applied Optics, Vol. 31, Issue 4, pp. 497-503 (1992)
http://dx.doi.org/10.1364/AO.31.000497


View Full Text Article

Enhanced HTML    Acrobat PDF (893 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method is described for facilitating the estimation of the background current that is generated by an infrared photodetector, based on the development of an idealized rectangular photon-responsivity spectrum that incorporates the detailed influence of the actual responsivity spectrum within the values of its predetermined parameters. Background currents may then be calculated algebraically without undue loss of precision by use of standard blackbody radiation formulas. Values of the parameters defining the idealized spectrum are derived for the majority of photodetectors in common use today, including silicide Schottky-barrier devices, and are applied within several examples of background-current estimation.

© 1992 Optical Society of America

History
Original Manuscript: June 15, 1990
Published: February 1, 1992

Citation
Owen M. Williams, "Infrared-photodetector background-current estimation," Appl. Opt. 31, 497-503 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-4-497


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. D. Hudson, Infrared System Engineering (Wiley, New York, 1969).
  2. J. M. Lloyd, Thermal Imaging Systems (Plenum, New York, 1975).
  3. T. Limperis, J. Mudar, “Detectors,” in Infrared Handbook, W. L. Wolfe, G. J. Zissis, eds. (U.S. Office of Naval Research, Washington, D.C., 1985), Chap. 11.
  4. J. M. Mooney, E. L. Dereniak, “Comparison on the performance limit of Schottky-barrier and standard infrared focal plane arrays,” Opt. Eng. 26, 223–227 (1987). [CrossRef]
  5. N. Bluzer, “Sensitivity limitations on IRFPA’s imposed by detector nonuniformities,” in Infrared Detectors and Arrays (Critical Reviews), E. L. Dereniak, ed., Proc. Soc. Photo-Opt. Instrum. Eng.930, 64–75 (1988).
  6. D. A. Scribner, M. R. Kruer, K. Sarkady, J. C. Gridley, “Spatial noise in staring IR focal plane arrays,” in Infrared Detectors and Arrays (Critical Reviews), E. L. Dereniak, ed., Proc. Soc. Photo-Opt. Instrum. Eng.930, 56–63 (1988).
  7. F. D. Shepherd, “Silicide infrared staring sensors,” in Infrared Detectors and Arrays (Critical Reviews), E. L. Dereniak, ed., Proc. Soc. Photo-Opt. Instrum. Eng.930, 2–10 (1988).
  8. W. F. Kosonocky, G. W. Hughes, “High fill factor silicide monolithic arrays,” in Infrared Sensors and Sensor Fusion, R. G. Buser, F. B. Warren, eds., Proc. Soc. Photo-Opt. Instrum. Eng.782, 114–120 (1987).
  9. W. F. Kosonocky, “Infrared image sensors with Schottky-barrier detectors,” in Technologies for Optoelectronics, J. M. Bulabois, R. F. Potter, eds., Proc. Soc. Photo-Opt. Instrum. Eng.869, 90–106 (1987).
  10. W. F. Kosonocky, F. V. Shallcross, T. S. Villani, J. V. Groppe, “160 × 244 element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Trans. Electron Devices ED-32, 1564–1573 (1985). [CrossRef]
  11. J. M. Mooney, J. Silverman, “The theory of hot-electron photoemission in Schottky-barrier detectors,” IEEE Trans. Electron Devices ED-32, 33–39 (1985). [CrossRef]
  12. W. L. Wolfe, “Radiometry,” in Applied Optics and Optical Engineering, Vol. 8, R. R. Shannon, J. C. Wyant, eds. (Academic, New York, 1980) Chap. 5, pp. 117–170.
  13. W. L. Wolfe, “Radiation theory,” in Infrared Handbook, W. L. Wolfe, G. J. Zissis, eds. (U.S. Office of Naval Research, Washington, D.C., 1985), Chap. 1.
  14. O. M. Williams, “Photon parameter characterization of infrared photodetectors,” Infrared Phys. 26, 155–166 (1986). [CrossRef]
  15. O. M. Williams, “Infrared photodetector photon formalism: extension and application,” Infrared Phys. 27, 167–179 (1987). [CrossRef]
  16. E. L. Dereniak, D. G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984).
  17. F. E. Nicodemus, “Normalization in radiometry,” Appl. Opt. 12, 73–86 (1973). [CrossRef]
  18. G. J. Zissis, “Radiometry,” in Infrared Handbook, W. L. Wolfe, G. J. Zissis, eds. (Office of Naval Research, Washington, D.C., 1985), Chap. 20.
  19. O. M. Williams, “A critique on the application of infrared photodetector theory,” Infrared Phys. 26, 141–153 (1986). [CrossRef]
  20. R. N. Colwell, ed., Manual of Remote Sensing, 2nd ed. (American Society of Photogrammetry Falls Church, Va., Vol. 1. 1983).
  21. G. H. Suits, “Natural sources,” in Infrared Handbook, W. L. Wolfe, G. J. Zissis, eds. (U.S. Office of Naval Research, Washington, D.C., 1985), Chap. 3.
  22. Note that ΔeqbBB was formerly14,19 denoted by ϕB and sometimes appears within the literature expressed as QB. The parameter is the same as that appearing, for example, within the conventional background-limited infrared photoconductor expression1,16,19DBLIP*=λ2hc(η0ϕB)1/2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited