OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 5 — Feb. 10, 1992
  • pp: 581–591

Image logic algebra and its optical implementations

Masaki Fukui and Ken-ichi Kitayama  »View Author Affiliations


Applied Optics, Vol. 31, Issue 5, pp. 581-591 (1992)
http://dx.doi.org/10.1364/AO.31.000581


View Full Text Article

Enhanced HTML    Acrobat PDF (1251 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A generic language for optical parallel processing image logic algebra (ILA), is proposed. In ILA a neighborhood configuration pattern (NCP) is introduced, and image transformations are defined by the use of NCP operations. The comprehensive relationship of ILA to symbolic substitution, optical array logic, mathematical morphology, and binary image algebra are clarified. Furthermore, an architecture that is suited for ILA and its optical implementations is proposed.

© 1992 Optical Society of America

History
Original Manuscript: November 9, 1990
Published: February 10, 1992

Citation
Masaki Fukui and Ken-ichi Kitayama, "Image logic algebra and its optical implementations," Appl. Opt. 31, 581-591 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-5-581


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Huang, “Parallel algorithms for optical digital computers,” in Technical Digest of the IEEE Tenth International Optical Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 13–17.
  2. K-H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054–3060 (1986). [CrossRef] [PubMed]
  3. K-H. Brenner, “New implementation of symbolic substitution logic,” Appl. Opt. 25, 3061–3064 (1986). [CrossRef] [PubMed]
  4. J. Tanida, Y. Ichioka, “Optical-logic-array processor using shadowgrams. III. Parallel neighborhood operations and an architecture of an optical digital-computing system.” J. Opt. Soc. Am. A 2, 1245–1253 (1985). [CrossRef]
  5. J. Tanida, Y. Ichioka, “OPALS: optical parallel array logic system,” Appl. Opt. 25, 1565–1570 (1986). [CrossRef] [PubMed]
  6. K-S. Huang, B. K. Jenkins, A. A. Sawchuk, “Image algebra representation of parallel optical binary arithmetic,” Appl. Opt. 28, 1263–1278 (1989). [CrossRef] [PubMed]
  7. T. J. Drabik, S. H. Lee, “Shift-connected SIMD array architectures for digital optical computing systems, with algorithms for numerical transforms and partial differential equations,” Appl. Opt. 25, 4053–4064 (1986). [CrossRef] [PubMed]
  8. G. Eichmann, J. Zhu, Y. Li, “Optical parallel image skeletonization using content-addressable memory-based symbolic substitution,” Appl. Opt. 27, 2905–2911 (1988). [CrossRef] [PubMed]
  9. S. D. Goodman, W. T. Rhodes, “Symbolic substitution applications to image processing,” Appl. Opt. 27, 1708–1714 (1988). [CrossRef] [PubMed]
  10. J. Tanida, Y. Ichioka, “Programming of optical array logic. 1: Image data processing,” Appl. Opt. 27, 2926–2930 (1988). [CrossRef] [PubMed]
  11. J. Tanida, M. Fukui, Y. Ichioka, “Programming of optical array logic. 2: Numerical data processing based on pattern logic,” Appl. Opt. 27, 2931–2939 (1988). [CrossRef] [PubMed]
  12. J. Tanida, J. Nakagawa, E. Yagyu, M. Fukui, Y. Ichioka, “Experimental verification of parallel processing on a hybrid optical parallel array logic system,” Appl. Opt. 29, 2510–2521 (1990). [CrossRef] [PubMed]
  13. M. Fukui, J. Tanida, Y. Ichioka, “Flexible-structured computation based on optical array logic,” Appl. Opt. 29, 1604–1609 (1990). [CrossRef] [PubMed]
  14. R. M. Haralick, S. R. Sternberg, X. Zhuang, “Image analysis using mathematical morphology,” IEEE Tran. Pattern Anal. Machine Intell. PAMI-9, 532–550 (1987). [CrossRef]
  15. P. Maragos, “Tutorial on advances in morphological image processing and analysis,” Opt. Eng. 26, 623–632 (1987). [CrossRef]
  16. P. Maragos, R. W. Schafer, “Morphological systems for multidimensional signal processing,” Proc. IEEE 78, 690–710 (1990). [CrossRef]
  17. D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. QE-21, 1462–1476 (1985). [CrossRef]
  18. J. N. Mait, K-H. Brenner, “Optical symbolic substitution: system design using phase-only holograms,” Appl. Opt. 27, 1692–1700 (1988). [CrossRef] [PubMed]
  19. B. D. Clymer, J. W. Goodman, “Optical clock distribution to silicon chips,” Opt. Eng. 25, 1103–1108 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited