OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 6 — Feb. 20, 1992
  • pp: 707–717

Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods

Joel A. Silver  »View Author Affiliations


Applied Optics, Vol. 31, Issue 6, pp. 707-717 (1992)
http://dx.doi.org/10.1364/AO.31.000707


View Full Text Article

Enhanced HTML    Acrobat PDF (1500 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A variety of frequency-modulation methods for high-sensitivity absorption detection of gas-phase species has evolved in recent years. The distinctions among these methods are mostly semantic. The mathematical derivations for wavelength-modulation spectroscopy and one- and two-tone frequency-modulation spectroscopies are presented; a common terminology is used to permit a comprehensive comparison of predicted detection sensitivities. Applying this formalism, I compare the optimum detection sensitivities of these different methods for a typical laser system, using the same parameters. As long as residual amplitude modulation is minimized by proper adjustment of the detection phase angle, high-frequency wavelength modulation and one- and two-tone frequency-modulation methods all achieve approximately the same sensitivities. The choice among techniques is most strongly driven by the individual laser tuning characteristics, the absorption linewidth, and the detection bandwidth. It is shown that excess laser noise cannot always be excluded from consideration, even at megahertz detection frequencies. Also, detection at harmonics of the modulation or beat frequency may present certain advantages in minimizing residual amplitude-modulation noise.

© 1992 Optical Society of America

History
Original Manuscript: May 24, 1990
Published: February 20, 1992

Citation
Joel A. Silver, "Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods," Appl. Opt. 31, 707-717 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-6-707


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1186–1190 (1982) [CrossRef]
  2. F. Slemr, G. W. Harris, D. R. Hastie, G. I. Mackay, H. I. Schiff, “Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy,” J. Geophys. Res. 91, 5371–5378 (1986). [CrossRef]
  3. D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short-extended-cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1332 (1990). [CrossRef] [PubMed]
  4. P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989). [CrossRef]
  5. C. B. Carlisle, D. E. Cooper, H. Prier, “Quantum noise-limited FM spectroscopy with a lead-salt diode laser,” Appl. Opt. 28, 2567–2576 (1989). [CrossRef] [PubMed]
  6. L. G. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989). [CrossRef]
  7. E. I. Moses, C. L. Tang, “High-sensitivity laser wavelength-modulation spectroscopy,” Opt. Lett. 1, 115–117 (1977). [CrossRef] [PubMed]
  8. P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983). [CrossRef]
  9. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  10. W. Lenth, C. Ortiz, G. C. Bjorklund, “Frequency modulation excitation spectroscopy,” Opt. Commun. 41, 369–373 (1982). [CrossRef]
  11. G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of line-shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983). [CrossRef]
  12. D. E. Cooper, R. E. Warren, “Two-tone heterodyne spectroscopy with diode lasers: theory of line shapes and experimental results,” J. Opt. Soc. Am. B 4, 470–480 (1987). [CrossRef]
  13. E. A. Whittaker, C. M. Shum, H. Grebel, H. Lotem, “Reduction of residual amplitude modulation in frequency-modulation spectroscopy by using harmonic frequency modulation,” J. Opt. Soc. Am. B 5, 1253–1256 (1988). [CrossRef]
  14. G. R. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 3, 1070–1074 (1986). [CrossRef]
  15. G. Janik, C. Carlisle, T. F. Gallagher, “Frequency modulation spectroscopy with second harmonic detection,” Appl. Opt. 24, 3318–3319 (1985). [CrossRef] [PubMed]
  16. D. E. Cooper, T. F. Gallagher, “Double frequency modulation spectroscopy: high modulation frequency with low-bandwidth detectors,” Appl. Opt. 24, 1327–1334 (1985). [CrossRef] [PubMed]
  17. D. S. Bomse, J. A. Silver, A. C. Stanton, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992). [CrossRef] [PubMed]
  18. L.-G. Wang, H. Riris, C. B. Carlisle, T. F. Gallagher, “Comparison of approaches to modulation spectroscopy with GaAlAs semiconductor lasers: application to water vapor,” Appl. Opt. 27, 2071–2077 (1988). [CrossRef] [PubMed]
  19. G. V. H. Wilson, “Modulation broadening of NMR and ESR line shapes,” J. Appl. Phys. 34, 3276–3285 (1963). [CrossRef]
  20. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965). [CrossRef]
  21. M. Abramowitz, I. A. Stegun, eds. Handbook of Mathematical Functions (Dover, New York, 1972).
  22. W. Lenth, “Optical heterodyne spectroscopy with frequency-and amplitude-modulated semiconductor lasers,” Opt. Lett. 11, 575–577 (1983). [CrossRef]
  23. M. Gehrtz, W. Lenth, A. T. Young, H. S. Johnston, “High frequency-modulation spectroscopy with a lead-salt diode laser,” Opt. Lett. 11, 132–134 (1986). [CrossRef] [PubMed]
  24. W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers.” IEEE J. Quantum Electron. QE-20, 1045–1050 (1984). [CrossRef]
  25. J. A. Silver, A. C. Stanton, “Two-tone optical heterodyne spectroscopy using buried double heterostructure lead-salt diode lasers,” Appl. Opt. 27, 4438–4444 (1988). [CrossRef] [PubMed]
  26. D. E. Cooper, J. P Watjen, “Two-tone optical heterodyne spectroscopy with a tunable lead-salt diode laser,” Opt. Lett. 11, 606–608 (1986). [CrossRef] [PubMed]
  27. There is some ambiguity over the use of the symbol α in the FM literature. 10–12,24,26,28 in Cooper’s papers, α is used to represent the electric field attenuation coefficient, whereas Lenth and Bjorklund use δ for this purpose and α for the intensity attenuation. Experimental measurements measure attenuation of the laser intensity (which is proportional to the square of the electric field). This is conveniently expressed by Beer’s law, which relates the intensity attenuation to absorbance (using the symbol α) by I/I0 = exp(−α). We therefore use this convention by following the notation of Bjorklund et al.11 For consistency with all earlier notation, the electric field dispersion coefficient is denoted by ϕ.
  28. D. E. Cooper, R. E. Warren, “Frequency modulation spectroscopy with lead-salt diode lasers: a comparison of single-tone and two-tone techniques,” Appl. Opt. 26, 3726–3732 (1987). [CrossRef] [PubMed]
  29. R. D. Hudson, Infrared Systems Engineering (Wiley-Interscience, New York, 1969), p. 309.
  30. X. Ouyang, P. L. Varghese, “Reliable and efficient program for fitting Galatry and Voigt profiles to spectral data on multiple lines,” Appl. Opt. 28, 1538–1545 (1989). [CrossRef] [PubMed]
  31. M. Gehrtz, G. C. Bjorklund, E. A. Whittaker, “Quantum-limited laser frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 2, 1510–1526 (1985). [CrossRef]
  32. C. B. Carlisle, D. E. Cooper, “Tunable-diode-laser frequency-modulation spectroscopy using balanced homodyne detection,” Opt. Lett. 14, 1306–1308 (1989). [CrossRef] [PubMed]
  33. N. C. Wong, J. A. Hall, “High-resolution measurements of water-vapor overtone absorption in the visible by frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 6, 2300–2308 (1989). [CrossRef]
  34. J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity limits of a tunable diode laser spectrometer, with application to the detection of N02 at the 100-ppt level,” Appl. Opt. 19, 3349–3354 (1980). [CrossRef] [PubMed]
  35. J. A. Silver, A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988). [CrossRef] [PubMed]
  36. J. B. McManus, P. L. Kebabian, “Narrow optical interference fringes for certain setup conditions in multiple pass absorption cells of the Herriott type,” Appl. Opt. 29, 898–900 (1990). [CrossRef] [PubMed]
  37. C. R. Webster, “Brewster-plate spoiler: a novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption sensitivities,” J. Opt. Soc. Am. B 2, 1464–1470 (1985). [CrossRef]
  38. N.-Y. Chou, G. W. Sachse, L.-G. Wang, T. F. Gallagher, “Optical fringe reduction technique for FM laser spectroscopy,” Appl. Opt. 28, 4973–4975 (1989). [CrossRef] [PubMed]
  39. T. Iguchi, “Modulation waveforms for second-harmonic detection with tunable diode lasers,” J. Opt. Soc. Am. B 3, 419–423 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited