OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 31, Iss. 6 — Feb. 20, 1992
  • pp: 718–731

Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser

David S. Bomse, Alan C. Stanton, and Joel A. Silver  »View Author Affiliations


Applied Optics, Vol. 31, Issue 6, pp. 718-731 (1992)
http://dx.doi.org/10.1364/AO.31.000718


View Full Text Article

Enhanced HTML    Acrobat PDF (2021 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wavelength modulation spectroscopy (WMS) and one-tone and two-tone frequency modulation spectroscopy (FMS) are compared by measuring the minimum detectable absorbances achieved using a mid-IR lead-salt diode laser. The range of modulation and detection frequencies spans over 5 orders of magnitude. The best results, absorbances in the low-to-mid 10−7 range in a 1-Hz bandwidth, are obtained by using high-frequency WMS (10-MHz detection frequency) and are limited by detector thermal noise. This sensitivity can provide species detection limits well below 1 part per billion for molecules with moderate line strengths if multiple-pass cells are used. High-frequency WMS is also tested by measuring the absorbance due to tropospheric N2O at 1243.795 cm−1. WMS at frequencies <100 kHz is limited by laser excess (1/f) noise. Both of the FMS methods, which require modulating the laser at frequencies ≥150 MHz, give relatively poor results due to inefficient coupling of the modulation waveform to the laser current. The results obtained agree well with theory. We also discuss the sensitivity limitations due to interference fringes from unintentional étalons and the effectiveness of étalon reduction schemes.

© 1992 Optical Society of America

History
Original Manuscript: October 17, 1990
Published: February 20, 1992

Citation
David S. Bomse, Alan C. Stanton, and Joel A. Silver, "Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser," Appl. Opt. 31, 718-731 (1992)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-31-6-718


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1186–1190 (1982). [CrossRef]
  2. F. Slemr, G. W. Harris, D. R. Hastie, G. I. Mackay, H. I. Schiff, “Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy,” J. Geophys. Res. 91, 5371–5378 (1986). [CrossRef]
  3. D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short-extended-cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1332 (1990). [CrossRef] [PubMed]
  4. P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989). [CrossRef]
  5. C. B. Carlisle, D. E. Cooper, H. Prier, “Quantum noise-limited FM spectroscopy with a lead-salt diode laser,” Appl. Opt. 28, 2567–2576 (1989). [CrossRef] [PubMed]
  6. L. G. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989). [CrossRef]
  7. E. I. Moses, C. L. Tang, “High-sensitivity laser wavelength-modulation spectroscopy,” Opt. Lett. 1, 115–117 (1977). [CrossRef] [PubMed]
  8. P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, “High frequency wavelength modulation spectroscopy with diode lasers,” Opt. Commun. 44, 175–179 (1983). [CrossRef]
  9. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  10. W. Lenth, C. Ortiz, G. C. Bjorklund, “Frequency modulation excitation spectroscopy,” Opt. Commun. 41, 369–373 (1982). [CrossRef]
  11. G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of line-shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983). [CrossRef]
  12. D. E. Cooper, R. E. Warren, “Two-tone heterodyne spectroscopy with diode lasers: theory of line shapes and experimental results,” J. Opt. Soc. Am. B 4, 470–480 (1987). [CrossRef]
  13. E. A. Whittaker, C. M. Shum, H. Grebel, H. Lotem, “Reduction of residual amplitude modulation in frequency-modulation spectroscopy by using harmonic frequency modulation,” J. Opt. Soc. Am. B 5, 1253–1256 (1988). [CrossRef]
  14. G. R. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 3, 1070–1074 (1986). [CrossRef]
  15. G. Janik, C. Carlisle, T. F. Gallagher, “Frequency modulation spectroscopy with second harmonic detection,” Appl. Opt. 24, 3318–3319 (1985). [CrossRef] [PubMed]
  16. D. E. Cooper, T. F. Gallagher, “Double frequency modulation spectroscopy: high modulation frequency with low-bandwidth detectors,” Appl. Opt. 24, 1327–1334 (1985). [CrossRef] [PubMed]
  17. J. A. Silver, “Frequency modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992). [CrossRef] [PubMed]
  18. G. V. H. Wilson, “Modulation broadening of NMR and ESR line shapes,” J. Appl. Phys. 34, 3276–3285 (1963). [CrossRef]
  19. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965). [CrossRef]
  20. D. E. Cooper, R. E. Warren, “Frequency modulation spectroscopy with lead-salt diode lasers: a comparison of single-tone and two-tone techniques,” Appl. Opt. 26, 3726–3732 (1987). [CrossRef] [PubMed]
  21. W. Lenth, “Optical heterodyne spectroscopy with frequency-and amplitude-modulated semiconductor lasers,” Opt. Lett., 11, 575–577 (1983). [CrossRef]
  22. W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron. QE-20, 1045–1050 (1984). [CrossRef]
  23. R. D. Hudson, Infrared Systems Engineering (Wiley-Interscience, New York, 1969), p. 309.
  24. J. A. Silver, A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27, 1914–1916 (1988); J. A. Silver, A. C. Stanton, U.S. Patent4,934,816 (19June1990). [CrossRef] [PubMed]
  25. J. A. Silver, A. C. Stanton, “Two-tone optical heterodyne spectroscopy using buried double heterostructure lead-salt diode lasers,” Appl. Opt. 27, 4438–4444 (1988). [CrossRef] [PubMed]
  26. D. R. Herriott, H. Kogelnik, R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964). [CrossRef]
  27. D. R. Herriott, H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883–889 (1965). [CrossRef]
  28. R. Altmann, R. Baumgart, C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–999 (1981). [CrossRef] [PubMed]
  29. J. B. McManus, P. L. Kebabian, “Narrow optical interference fringes for certain setup conditions in multipass absorption cells of the Herriott type,” Appl. Opt. 29, 898–900 (1990). [CrossRef] [PubMed]
  30. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4095 (1987). [CrossRef] [PubMed]
  31. G. Guelachvili, K. N. Rao, eds., Handbook of Infrared Standards with Spectral Maps and Transition Assignments Between 3 and 2600 μm (Academic, Orlando, Fla., 1986), pp. 318–319.
  32. P. Werle, F. Slemr, M. Gehrtz, C. Bräuchle, “Wide-band noise characteristics of a lead-salt diode laser: possibility of quantum limited TDLAS performance,” Appl. Opt. 28, 1638–1642 (1989). [CrossRef] [PubMed]
  33. D. E. Cooper, C. B. Carlisle, “High-sensitivity FM spectroscopy with a lead-salt diode laser,” Opt. Lett. 13, 719–721 (1988). [CrossRef] [PubMed]
  34. W. R. Coffer, V. S. Connors, J. S. Levine, “Day and night profiles of tropospheric nitrous oxide,” J. Geophys. Res. 91, 11, 911–11, 914 (1986). [CrossRef]
  35. P. S. Connell, R. A. Perry, C. J. Howard, “Tunable diode laser measurement of nitrous oxide in air,” Geophys. Res. Lett. 7, 1093–1096 (1980). [CrossRef]
  36. J. A. Silver, A. C. Stanton, “Airborne measurements of humidity using a single-mode Pb-salt diode laser,” Appl. Opt. 26, 2558–2566 (1987). [CrossRef] [PubMed]
  37. G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987). [CrossRef]
  38. C. R. Webster, R. D. May, “Simultaneous in situ measurements and diurnal variations of NO, NO2, O3, jNO2, CH4, H2O, and CO2 in the 40- to 26-km region using an open path tunable diode laser spectrometer,” J. Geophys. Res. tunable diode laser spectrometer,” J. Geophys. Res. 92, 11,931–11,950 (1987). [CrossRef]
  39. A. C. Stanton, J. A. Silver, “Measurements in the HCl 3 ← 0 band using a near-IR InGaAsP diode laser,” Appl. Opt. 27, 5009–5015 (1988). [CrossRef] [PubMed]
  40. C. R. Webster, “Stratospheric composition measurements of Earth and Titan using high-resolution tunable diode laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 40, 239–248 (1988). [CrossRef]
  41. M. Lowenstein, “Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules,” J. Quant. Spectrosc. Radiat. Transfer 40, 249–256 (1988). [CrossRef]
  42. G. I. Mackay, H. I. Schiff, A. Wiebe, K. Anlauf, “Measurements of NO2, H2CO and HNO3 by tunable diode laser absorption spectroscopy during the 1985 Claremont intercomparison study,” Atmos. Environ. 22, 1555–1564 (1988). [CrossRef]
  43. F. G. Celii, P. E. Pehrsson, H.-T. Wang, J. E. Butler, “Infrared detection of gaseous species during the filament assisted growth of diamond,” Appl. Phys. Lett. 52, 2043–2045 (1988). [CrossRef]
  44. F. G. Celii, P. E. Pehrsson, H.-T. Wang, H. H. Nelson, J. E. Butler, “In situ detection of gaseous species in the filament assisted diamond growth environment,” Adv. Laser Sci. IV 191, 747–749 (1989).
  45. J. E. Hayward, D. T. Cassidy, J. Reid, “High sensitivity transient spectroscopy using tunable diode lasers,” Appl. Phys. B 48, 25–29 (1989). [CrossRef]
  46. G. Schmidtke, W. Kohn, U. Klocke, M. Knothe, W. J. Riedel, H. Wolf, “Diode laser spectrometer for monitoring up to five atmospheric trace gases in unattended operation,” Appl. Opt. 28, 3665–3670 (1989). [CrossRef] [PubMed]
  47. G. W. Harris, G. I. Mackay, T. Iguichi, L. K. Mayne, H. I. Schiff, “Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy,” J. Atmos. Chem. 8, 119–137 (1989). [CrossRef]
  48. J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity limits of a tunable diode laser spectrometer, with application to the detection of NO2 at the 100-ppt level,” Appl. Opt. 19, 3349–3354 (1980). [CrossRef] [PubMed]
  49. C. R. Webster, “Brewster-plate spoiler: a novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption,” J. Opt. Soc. Am. B 2, 1464–1470 (1985). [CrossRef]
  50. C. B. Carlisle, D. E. Cooper, “Tunable-diode-laser frequency-modulation spectroscopy using balanced homodyne detection,” Opt. Lett. 14, 1306–1308 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited