OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 31, Iss. 9 — Mar. 20, 1992
  • pp: 1318–1321

Frequency-doubled and Q-switched 946-nm Nd:YAG laser pumped by a diode-laser array

Junhua Hong, Bruce D. Sinclair, Wilson Sibbett, and Malcolm H. Dunn  »View Author Affiliations

Applied Optics, Vol. 31, Issue 9, pp. 1318-1321 (1992)

View Full Text Article

Enhanced HTML    Acrobat PDF (510 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Q-switched 946-nm Neodymium:yttrium aluminum garnet (Nd:YAG) laser pumped by a diode-laser array has been developed. At room temperature, pulses with 4.9-μJ energy and 68.5-ns pulse duration were observed. When the temperature of the Nd:YAG crystal was lowered to 5°C, the duration of the pulses was reduced to 62 ns, giving rise to peak powers of 76 W. By focusing the Q-switched pulses into a 5-mm-long potassium niobate crystal, second-harmonic generation produced blue light pulses at 473 nm of 42-ns duration and 22-W peak power. The pulse repetition rate was kept at 1.5 kHz throughout.

© 1992 Optical Society of America

Original Manuscript: February 6, 1991
Published: March 20, 1992

Junhua Hong, Bruce D. Sinclair, Wilson Sibbett, and Malcolm H. Dunn, "Frequency-doubled and Q-switched 946-nm Nd:YAG laser pumped by a diode-laser array," Appl. Opt. 31, 1318-1321 (1992)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Y. Fan, G. J. Dixon, R. L. Byer, “Efficient GaAlAs diode-laser-pumped operation of Nd:YLF at 1.047 μm with intracavity doubling to 523.6 nm,” Opt. Lett. 11, 204–206 (1986). [CrossRef] [PubMed]
  2. W. P. Risk, W. Lenth, “Room-temperature, continuous-wave, 946-nm Nd:YAG laser pumped by laser-diode arrays and intracavity frequency doubling to 473 nm,” Opt. Lett. 12, 993–995 (1987). [CrossRef] [PubMed]
  3. W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988). [CrossRef]
  4. L. Goldberg, M. K. Chun, “Efficient generation of 421 nm by resonantly enhanced doubling of GaAlAs laser diode array emission,” Appl. Phys. Lett. 55, 218–220 (1989). [CrossRef]
  5. W. P. Risk, R. N. Payne, W. Lenth, C. Harder, H. Meier, “Noncritically phase-matched frequency doubling using 994 nm dye and diode laser radiation in KTiOPO4,” Appl. Phys. Lett. 55, 1179–1181 (1989). [CrossRef]
  6. R. W. Wallace, S. E. Harris, “Oscillation and doubling of the 0.946-μ, line in Nd3+:YAG,” Appl. Phys. Lett. 15, 111–112 (1969). [CrossRef]
  7. T. Y. Fan, R. L. Byer, “Continuous-wave operation of a room-temperature, diode-laser-pumped, 946-nm Nd:YAG laser,” Opt. Lett. 12, 809–811 (1987). [CrossRef] [PubMed]
  8. G. J. Dixon, Z. M. Zhang, R. S. F. Chang, N. Djeu, “Efficient blue emission from an intracavity-doubled 946-nm Nd:YAG laser,” Opt. Lett. 13, 137–139 (1988). [CrossRef] [PubMed]
  9. W. P. Risk, R. Pon, W. Lenth, “Diode laser pumped blue-light source at 473 nm using intracavity frequency doubling of a 946 nm Nd:YAG laser,” Appl. Phys. Lett. 54, 1625–1627 (1989). [CrossRef]
  10. T. Y. Fan, R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG Laser,” IEEE J. Quantum Electron. QE-23, 605–612 (1987).
  11. H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, “Astigmatically compensated cavities of CW dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972). [CrossRef]
  12. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  13. J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, R. P. Bauman, “Optical phonons of yttrium aluminum garnet,” Phys. Rev. 173, 851–856 (1968). [CrossRef]
  14. B. F. Aull, H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. QE-18, 925–930 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited