OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 32, Iss. 14 — May. 10, 1993
  • pp: 2582–2598

Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles

Daniel H. Raguin and G. Michael Morris  »View Author Affiliations


Applied Optics, Vol. 32, Issue 14, pp. 2582-2598 (1993)
http://dx.doi.org/10.1364/AO.32.002582


View Full Text Article

Enhanced HTML    Acrobat PDF (2198 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel thoretical treatment of antireflection-structured surfaces possessing general one-dimensional continuous profiles is presented. Closed-form solutions for the field reflection coefficients of these antireflection-structured surfaces are obtained through the use of effective medium theory and tapered transmission-line theory. Two specific surface profiles (sinusoidal and triangular) are analyzed in detail. Both the sinusoidal and triangular profiles are found to exhibit low reflectances over a broad range of angles and wavelengths. Results obtained with effective medium theory and transmission-line theory are compared with results obtained through the application of rigorous coupled-wave analysis.

© 1993 Optical Society of America

History
Original Manuscript: July 13, 1992
Published: May 10, 1993

Citation
Daniel H. Raguin and G. Michael Morris, "Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles," Appl. Opt. 32, 2582-2598 (1993)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-32-14-2582


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. J. Minot, “Single-layer, gradient refractive index antireflection films effective from 0.35 to 2.5 μm,” J. Opt. Soc. Am. 66, 515–519 (1976). [CrossRef]
  2. W. H. Lowdermilk, D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett. 36, 891–893 (1980). [CrossRef]
  3. N. S. Gluck, J. P. Heuer, “Properties of mixed composition IR optical thin films,” in 1990 OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), p. 176.
  4. H. Sankur, W. H. Southwell, “Broadband gradient-index antireflection coating for ZnSe,” Appl. Opt. 23, 2770–2773 (1984). [CrossRef] [PubMed]
  5. P. B. Clapham, M. C. Hutley, “Reduction of lens reflexion by the ‘moth eye’ principle,” Nature (London) 244, 281–282 (1973). [CrossRef]
  6. M. C. Hutley, “Coherent photofabrication,” Opt. Eng. 15, 190–196 (1976).
  7. S. J. Wilson, M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta 29, 993–1009 (1982). [CrossRef]
  8. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982). [CrossRef]
  9. R. C. Enger, S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220–3228 (1983). [CrossRef] [PubMed]
  10. T. K. Gaylord, W. E. Baird, M. G. Moharam, “Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings,” Appl. Opt. 25, 4562–4567 (1986). [CrossRef] [PubMed]
  11. Y. Ono, Y. Kimura, Y. Ohta, N. Nishada, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt. 26, 1142–1146 (1987). [CrossRef] [PubMed]
  12. M. G. Moharam, “Coupled-wave analysis of two-dimensional dielectric gratings,” in Holographic Optics: Design and Applications, I. Cindrich, ed., Proc. Soc. Photo-Opt. Instrum. Eng.883, 8–11 (1988).
  13. B. L. Sopori, “Broadband very low reflectance surface,” Appl. Opt. 27, 25–27 (1988). [CrossRef] [PubMed]
  14. N. F. Hartman, T. K. Gaylord, “Antireflection gold surface-relief gratings: experimental characteristics,” Appl. Opt. 27, 3738–3743 (1988). [CrossRef] [PubMed]
  15. D. H. Raguin, G. M. Morris, “Diffraction analysis of antireflection surface-relief gratings on lossless dielectric surfaces,” in 1990 OSA Annual Meeting, Vol. 15 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), pp. 122–123.
  16. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A 8, 549–553 (1991). [CrossRef]
  17. T. K. Gaylord, E. N. Glytsis, M. G. Moharam, W. E. Baird, “Technique for producing antireflection grating surfaces on dielectrics, semiconductors, and metals,” U.S. patent5,007,708 (16April1991).
  18. W. Stork, N. Streibl, H. Haidner, P. Kipfer, “Artificial distributed-index media fabricated by zero-order gratings,” Opt. Lett. 24, 1921–1923 (1991). [CrossRef]
  19. D. Raguin, G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993). [CrossRef] [PubMed]
  20. T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985). [CrossRef]
  21. W. Thornburg, “The form birefringence of lamellar systems containing three or more components,” J. Biophys. Biochem. Cytol. 3, 413–419 (1957). [CrossRef] [PubMed]
  22. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980), pp. 705–708.
  23. S. M. Rytov, “The electromagnetic properties of finely layered medium,” Soviet Phys. JETP 2, 466–475 (1956).
  24. G. Franceschetti, “Scattering from plane layered media,” IEEE. Trans. Antennas Propat. 12, 754–763 (1964). [CrossRef]
  25. W. B. Veldkamp, G. J. Swanson, S. A. Gaither, C.-L. Chen, T. R. Osborne, “Binary optics: a diffraction analysis,” MIT Lincoln Laboratory Project Rep. ODT 20 (Massachusetts Institute of Technology Lincoln Laboratory, Lexington, Mass., 1989).
  26. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), pp. 205–208.
  27. J. D. Kraus, Electromagnetics (McGraw-Hill, New York, 1984), pp. 378–494.
  28. S. A. Schelkunoff, “The impedance concept and its application to problems of reflection, refraction, shielding, and power absorption,” Bell Syst. Tech. J. 17, 17–48 (1938).
  29. L. R. Walker, N. Wax, “Nonuniform transmission lines and reflection coefficients,” J. Appl. Phys. 17, 1043–1045 (1946). [CrossRef]
  30. H. A. Macleod, Thin-Film Optical Filters (Elsevier, New York, 1969), Chaps. 1 and 2.
  31. L. F. Johnson, “Evolution of grating profiles under ion-beam erosion,” Appl. Opt. 18, 2559–2574 (1979). [CrossRef] [PubMed]
  32. G. Hasnain, B. F. Levine, C. G. Bethea, R. A. Logan, J. Walker, R. J. Malik, “GaAs/AlGaAs multiquantum well infrared detector arrays using etched gratings,” Appl. Phys. Lett. 54, 2515–2517 (1989). [CrossRef]
  33. E. Hu, “Dry etching,” in Gallium Arsenide Technology, D. Ferry, ed. (Sams, Carmel, Ind., 1990), Ch. 10.
  34. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), pp. 589–590.
  35. M. Nakamura, K. Aiki, J. Umeda, A. Katzir, A. Yariv, H. W. Yen, “GaAs-GaAlAs double-heterostructure injection lasers with distributed feedback,” IEEE J. Quantum Electron. QE-11, 436–439 (1975). [CrossRef]
  36. S. K. Liew, N. W. Carlson, D. P. Bour, G. A. Evans, E. V. Gieson, “Demonstration of InGaAs/AlGaAs strained-layer distributed-feedback grating-surface-emitting lasers with a buried second-order grating structure,” Appl. Phys. Lett. 58, 228–230 (1991). [CrossRef]
  37. D. Raguin, “Subwavelength structured surfaces: theory and experiments,” Ph.D. dissertation (University of Rochester, Rochester, N.Y.1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited