OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 32, Iss. 15 — May. 20, 1993
  • pp: 2795–2802

Radiative transfer for a three-dimensional raining cloud

J. L. Haferman, W. F. Krajewski, T. F. Smith, and A. Sánchez  »View Author Affiliations


Applied Optics, Vol. 32, Issue 15, pp. 2795-2802 (1993)
http://dx.doi.org/10.1364/AO.32.002795


View Full Text Article

Enhanced HTML    Acrobat PDF (948 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Satellite-sensor-based microwave brightness temperatures for a three-dimensional raining cloud over a reflecting surface are computed by using a radiative transfer model based on the discrete-ordinates solution procedure. The three-dimensional model applied to a plane layer is validated by comparison with results from a one-dimensional model that is available in the literature. Results examining the effects of cloud height, rainfall rate, surface reflectance, rainfall footprint area, and satellite viewing position on one- and three-dimensional brightness temperature calculations are reported. The numerical experiments indicate that, under certain conditions, three-dimensional effects are significant in the analysis of satellite-sensor-based rainfall retrieval algorithms. The results point to the need to consider carefully three-dimensional effects as well as surface reflectance effects when interpreting satellite-measured radiation data.

© 1993 Optical Society of America

History
Original Manuscript: June 1, 1992
Published: May 20, 1993

Citation
J. L. Haferman, W. F. Krajewski, T. F. Smith, and A. Sánchez, "Radiative transfer for a three-dimensional raining cloud," Appl. Opt. 32, 2795-2802 (1993)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-32-15-2795


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Simpson, R. F. Adler, G. North, “A proposed tropical rainfall measuring mission (TRMM) satellite,” Bull. Am. Meteorol. Soc. 69, 278–295 (1988). [CrossRef]
  2. P. Arkin, P. Ardanuy, “Estimation of climatological scale precipitation from space: a review,” J. Climate 2, 1229–1238 (1989). [CrossRef]
  3. J. C. Alishouse, R. R. Ferraro, J. V. Fiore, “Inference of oceanic rainfall properties from the Nimbus 7 SMMR,” J. Appl. Meteorol. 29, 551–560 (1990). [CrossRef]
  4. C. D. Kummerow, J. A. Weinman, “Determining microwave brightness temperatures from precipitating horizontal finite and vertically structured clouds,” J. Geophys. Res. 93, 3720–3728 (1988). [CrossRef]
  5. T. T. Wilheit, A. T. C. Chang, J. L. King, E. B. Rodgers, R. A. Nieman, B. M. Krupp, A. S. Milman, J. S. Stratigos, H. Siddalingaiah, “Microwave radiometric observations near 19.35, 92 and 183 GHz of precipitation in tropical storm Cora,” J. Appl. Meteorol. 21, 1137–1145 (1982). [CrossRef]
  6. T. T. Wilheit, A. T. C. Chang, L. S. Chiu, “Retrieval of monthly rainfall indices from microwave radiometric measurements using probability distribution functions,” J. Atmos. Ocean. Technol. 8, 118–136 (1991). [CrossRef]
  7. A. Mugnai, H. J. Cooper, E. A. Smith, G. J. Tripoli, “Simulation of microwave brightness temperatures of an evolving hailstorm at SSM/I frequencies,” Bull. Am. Meteorol. Soc. 71, 2–13 (1990). [CrossRef]
  8. R. F. Adler, H-Y. M. Yeh, N. Prasad, W-K. Tao, J. Simpson, “Microwave simulations of a tropical rainfall system with a three-dimensional cloud model,” J. Appl. Meteorol. 30, 924–953 (1991). [CrossRef]
  9. T. T. Wilheit, A. T. C. Chang, M. S. B. Rao, J. S. Theon, “A satellite technique for quantitatively mapping rainfall rates over the oceans,” J. Appl. Meteorol. 16, 551–560 (1977). [CrossRef]
  10. J. A. Weinman, C. D. Kummerow, “A radiative transfer model of microwave radiances from horizontally finite clouds containing ice and liquid hydrometeor layers,” in Tropical Rainfall Measurements, J. S. Theon, N. Fugono, eds. (Deepack, Hampton, Va., 1988), pp. 325–336.
  11. B. G. Carlson, K. D. Lathrop, “Transport theory, the method of discrete-ordinates,” in Computing Methods in Reactor Physics, H. Greenspan, C. N. Kelber, D. Okrent, eds. (Gordon & Breach, New York, 1968), pp. 171–266.
  12. S. A. W. Gerstl, A. Zardecki, “Discrete-ordinates finite-element method for atmospheric radiative transfer and remote sensing,” Appl. Opt. 24, 81–93 (1985). [CrossRef] [PubMed]
  13. K. Stamnes, S-C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef] [PubMed]
  14. W. A. Fiveland, “Three-dimensional radiative heat transfer solutions by the discrete-ordinates method,” J. Thermophys. Heat Transfer 2, 309–316 (1988). [CrossRef]
  15. W. A. Fiveland, A. S. Jamaluddin, “Three-dimensional spectral heat transfer solutions by the discrete-ordinates method,” in Heat Transfer Phenomena in Radiation, Combustion, and Fires, R. K. Shah, ed. (American Society of Mechanical Engineers, New York, 1989), Vol. 106, pp. 43–48.
  16. T. K. Kim, H. S. Lee, “Radiative transfer in two-dimensional anisotropic scattering media with collimated incidence,” J. Quant. Spectrosc. Radiat. Transfer 42, 225–238 (1989). [CrossRef]
  17. A. Sánchez, W. F. Krajewski, T. F. Smith, A General Purpose Radiative Transfer Model for Application to Remote Sensing in Multi-Dimensional Systems, IIHR Rep. 355 (Iowa Institute of Hydraulic Research, The University of Iowa, Iowa City, Iowa, 1992).
  18. W. A. Fiveland, “The selection of discrete ordinate quadrature sets for anisotropic scattering,” in Fundamentals of Radiation Heat Transfer, W. A. Fiveland, A. L. Crosbie, A. M. Smith, T. F. Smith, eds. (American Society of Mechanical Engineers, New York, 1991), Vol. 160, pp. 89–96.
  19. 1985 ASHRAE Handbook—Fundamentals (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, Ga., 1985).
  20. F. T. Ulaby, R. K. Moore, A. K. Fung, Microwave Remote Sensing Fundamentals and Radiometry (Artech, Norwood, Mass., 1981), Vol. I.
  21. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  22. J. A. Lane, J. A. Saxton, “Dielectric dispersion in pure polar liquids at very high radio frequencies,” Proc. R. Soc. London Ser. A 213, 400–408 (1952). [CrossRef]
  23. A. Sánchez, T. F. Smith, W. F. Krajewski, “Dimensionality issues in modeling with the discrete-ordinates method,” submitted to J. Heat Transfer.
  24. H. W. Barker, J. A. Davies, “Solar radiative fluxes for broken cloud fields above reflecting surfaces,” J. Atmos. Sci. 49, 749–761 (1992). [CrossRef]
  25. A. Davis, P. Gabriel, S. Lovejoy, D. Schertzer, G. L. Austin, “Discrete angle radiative transfer 3. Numerical results and meteorological applications,” J. Geophys. Res. 95, 11,729–11,742 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited