OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 32, Iss. 18 — Jun. 20, 1993
  • pp: 3201–3209

Optical and mechanical properties of single-crystal sapphire optical fibers

Glenn N. Merberg and James A. Harrington  »View Author Affiliations


Applied Optics, Vol. 32, Issue 18, pp. 3201-3209 (1993)
http://dx.doi.org/10.1364/AO.32.003201


View Full Text Article

Enhanced HTML    Acrobat PDF (1232 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single-crystal sapphire fibers are produced by the laser heated pedestal growth technique. The fibers have attenuation coefficients of less than 2 dB/m at the Er:YAG laser wavelength of 2.94 μm and are used to deliver over 600 mJ of Er:YAG laser energy. Mechanical testing of these fibers and the sapphire fibers produced by the edge-defined, film-fed growth technique results in a measured 0.4% strain to failure when testing is done under a 4-point load. Teflon-FEP (perfluorinated ethylene propylene) is applied to sapphire fibers as a cladding. The cladding is extremely effective in preventing leakage of energy from the fibers into absorbing environments that may surround the fiber.

© 1993 Optical Society of America

History
Original Manuscript: April 29, 1992
Published: June 20, 1993

Citation
Glenn N. Merberg and James A. Harrington, "Optical and mechanical properties of single-crystal sapphire optical fibers," Appl. Opt. 32, 3201-3209 (1993)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-32-18-3201


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. E. Labelle, “EFG, the invention and application to sapphire growth,” J. Cryst. Growth 50, 8–17 (1980). [CrossRef]
  2. J. S. Haggerty, “Production of fibers by a floating zone fiber drawing technique,” Final Rep. NASA-CR-120948 (NASA, Greenbelt, Md., 1972).
  3. D. B. Gasson, B. Cockayne, J. Mat. Science 5, 100–104 (1970). [CrossRef]
  4. M. A. Saifi, B. Dubois, E. M. Vogel, “Laser heated growth and zone refining of single crystal fibers,” presented at the International Ceramics Conference, Milan, 1985.
  5. D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single crystal sapphire fibers for optical power delivery,” Appl. Phys. Lett. 55, 2170–2172 (1989). [CrossRef]
  6. G. N. Merberg, J. A. Harrington, “Single crystal fibers for laser power delivery,” in Infrared Fiber Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 100–108 (1991).
  7. M. E. Thomas, R. I. Joseph, W. J. Tropf, “Infrared transmission properties of sapphire, spinel, yttria, and ALON as a function of temperature and frequency,” Appl. Optics 27, 239–245 (1988). [CrossRef]
  8. J. A. Harrington, M. A. Braunstein, B. Bobbs, R. Braunstein, “Scattering losses in single and polycrystalline materials for IR fiber applications,” Adv. Ceram. 2, 94–103 (1981).
  9. T. C. Rich, D. A. Pinnow, “Total optical attenuation in bulk fused silica,” Appl. Phys. Lett. 20, 264–266 (1972). [CrossRef]
  10. C. A. Burrus, L. A. Coldren, “Growth of single crystal sapphire clad ruby fibers,” Appl. Phys. Lett. 31, 383–384 (1977). [CrossRef]
  11. R. L. Byer, M. M. Fejer, “Apparatus for growing crystal fibers,” U.S. patent4,421,721 (20December1983).
  12. D. C. Tran, K. H. Levin, C. F. Fisher, M. J. Burk, G. H. Sigel, “Rayleigh scattering in fluoride glass optical fibers,” Electron. Lett. 19, 165–166 (1983). [CrossRef]
  13. D. A. Pinnow, T. C. Rich, “Development of a calorimetric method for making precision optical absorption measurements,” Appl. Opt. 12, 984–992 (1973). [CrossRef] [PubMed]
  14. M. Hass, J. W. Davisson, H. B. Rosenstock, J. Babiskin, “Measurement of very low absorption coefficients by laser calorimetry,” Appl. Opt. 14, 1128–1130 (1975). [CrossRef] [PubMed]
  15. Saphikon, Inc., Milford, New Hampshire.
  16. J. Colaizzi, M. J. Matthewson, M. R. Shahriari, T. Iqbal, presented at the the Symposium on Solid State Optical Materials.
  17. G. J. Nelson, M. J. Matthewson, presented at the 93rd Annual Meeting of the American Ceramic Society, Cincinnati, Oh., 1991.
  18. R. W. Waynant, S. Oshry, M. Fink, “Infrared measurements of sapphire fibers for medical applications,” Appl. Opt. 32, 390–392 (1993). [CrossRef] [PubMed]
  19. J. McClure, “Optical spectra of transition-metal ions in corrundum,” J. Chem. Phys. 36, 2757 (1962). [CrossRef]
  20. B. D. Evans, M. Staplebroeck, “Optical vibronic absorbance spectra in 14.8 MeV neutron damaged sapphire,” Solid State Commun. 33, 765–770 (1980). [CrossRef]
  21. E. Kotomin, University of Latvia, Riga, Latvia (personal communication).
  22. T. J. Russel, B. S. H. Royce, E. Harari, “Displacement damage and radiation effects in boron implanted sapphire,” IEEE Trans. Nucl. Sci. NS-22, 2250–2252 (1975). [CrossRef]
  23. G. N. Merberg, M. R. Shahriari, J. A. Harrington, G. H. Sigel, “Evaluation of crystalline and chemically durable glass fibers for erbium:YAG laser delivery systems,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 216–223 (1990).
  24. L. L. Blyler, B. R. Eichenbaum, H. Schonhorn, in Optical Fiber Telecommunications, S. E. Miller, A. G. Chynoweth, eds. (Academic, New York, 1979), pp. 299–341.
  25. A. G. Evans, “A method for evaluating the time dependent failure characteristics of brittle materials and its application to polycrystalline alumina,” J. Mat. Sci. 7, 1137–1146 (1972). [CrossRef]
  26. J. B. Wachtman, D. G. Lam, “Young’s modulus of various refractory materials as a function of temperature,” J. Am. Ceram. Soc. 42, 254–260 (1959). [CrossRef]
  27. H. F. Wu, A. J. Perrotta, R. S. Feigelson, “Mechanical characterization of the single crystal α-alumina fibers grown by the laser heated pedestal growth technique,” Light Metal Age 49, 97–98 (1991).
  28. S. Sudo, I. Yokohama, “Single-crystal fibers and their device applications,” Jpn. Cryst. Growth Soc. J. 17, 211–218 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited