OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 32, Iss. 19 — Jul. 1, 1993
  • pp: 3409–3415

Correlation between substrate preparation technique and scatter observed from optical coatings

K. C. Hickman, R. Wingler, F. L. Williams, C. E. Sobczak, C. K. Carniglia, C. F. Kranenberg, K. Jungling, J. R. McNeil, and J. P. Black  »View Author Affiliations


Applied Optics, Vol. 32, Issue 19, pp. 3409-3415 (1993)
http://dx.doi.org/10.1364/AO.32.003409


View Full Text Article

Enhanced HTML    Acrobat PDF (1756 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present experimental evidence of the dependence of coating scatter on a substrate preparation technique for fused silica substrates. Samples included conventionally polished, superpolished, and float-polished substrates. We used scatterometry and total internal reflection microscopy to investigate the effects of substrate preparation on the performance of zirconium oxide thin films. Results indicate that scatter from coatings dominates the scatter signature of the coated optic. They also demonstrate that substrate preparation can affect the level of scatter produced in optical coatings. In addition it is observed that the substrates with the lowest scatter do not necessarily result in the coatings with the lowest scatter.

© 1993 Optical Society of America

History
Original Manuscript: August 31, 1992
Published: July 1, 1993

Citation
K. C. Hickman, R. Wingler, F. L. Williams, C. E. Sobczak, C. K. Carniglia, C. F. Kranenberg, K. Jungling, J. R. McNeil, and J. P. Black, "Correlation between substrate preparation technique and scatter observed from optical coatings," Appl. Opt. 32, 3409-3415 (1993)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-32-19-3409


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. L. Thomas, “Low-scatter, low-loss mirrors for laser gyros,” in Laser Inertial Rotation Sensors,S. Ezekial, G. E. Knausenberger, eds., Proc. Soc. Photo-Opt. Instrum. Eng.157, 41–48 (1978).
  2. F. D. Orazio, W. K. Stowell, R. M. Silva, “Instrumentation of a variable angle scatterometer (VAS),” in Generation, Measurement and Control of Strag Radiation III, R. P. Breault, ed., Proc. Soc. Photo-Opt. Instrum. Eng.384, 123–131 (1983).
  3. W. K. Stowell, “Damage effects identified by scatter evaluation of supersmooth surfaces,”in Physics of Optical Ring Gyros, S. F. Jacobs, J. E. Killpatrick, V. E. Sanders, M. Sargent, M. O. Scully, J. H. Simpson, eds., Proc. Soc. Photo-Opt. Instrum Eng.487, 58–77 (1984). [CrossRef]
  4. L. G. DeShazer, B. E. Newman, K. M. Keung, “The role of coating defects in laser induced damage to thin films,”in Laser Induced Damage in Optical Materials: 1973, Natl. Bur. Stand. (U.S.) Spec. Publ. 387, 114–123 (1974).
  5. M. B. Moran, R. H. Kuo, C. D. Marrs, “Scatter intensity mapping of laser-illuminated coating defects,” Appl. Opt. 27, 957–962 (1988). [CrossRef] [PubMed]
  6. J. O. Porteus, C. J. Spiker, J. B. Frank, “Correlation between local HeNe scatter and defect-initiated laser damage at 2.7 μm,” in Laser Induced Damage in Optical Materials: 1988, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 746, 449–459 (1989).
  7. G. R. Hostetter, D. L. Patz, H. A. Hill, C. A. Zanoni, “Measurements of scattered light from mirrors and lenses,” Appl. Opt. 7, 1383–1385 (1968). [PubMed]
  8. C. Leinert, D. Kluppelberg, “Stray light suppression in optical space experiments,” Appl. Opt. 13, 556–564 (1974). [CrossRef] [PubMed]
  9. J. P. Black, “Scatter instrumentation and design with measurement application to fused silica and air,” M. S. thesis (University of New Mexico, Albuquerque, N. Mex., 1992).
  10. C. K. Carniglia, “Scalar scattering theory for multilayer optical coatings,” Opt. Eng. 18, 104–115 (1979).
  11. J. M. Elson, J. P. Rahn, J. M. Bennett, “Light scattering from multilayer optics: comparison of theory and experiment,” Appl. Opt. 19, 669–679 (1980). [CrossRef] [PubMed]
  12. R. P. Young, “Low-scatter mirror degradation by particle contamination,” Opt. Eng. 15, 516–520 (1976).
  13. P. A. Carosso, N. J. Pugel Carosso, “Role of scattering distribution functions in spacecraft contamination control practices,” Appl. Opt. 25, 1230–1234 (1986). [CrossRef] [PubMed]
  14. K. H. Guenther, “Nodular defects in dielectric multilayers and thick single layers,” Appl. Opt. 20, 1034–1038 (1981). [CrossRef] [PubMed]
  15. K. H. Guenther, “Microstructure of vapor-deposited optical coatingsx,” Appl. Opt. 23, 3806–3816 (1984). [CrossRef] [PubMed]
  16. B. Liao, D. J. Smith, B. McIntyre, “The formation and development of nodular defects in optical coatings,”in Laser Induced Damage in Optical Materials: 1985, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 746, 305–318 (1986).
  17. J. P. Chambers, S. F. Himelinski, K. F. Irvine, T. M. Donovan, J. M. Bennett, “Minimizing defects in infrared coatings on silicon,” in Optical Thin Films III: New Developments, R. I. Seddon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1323, 253– 262 (1990).
  18. E. L. Church, H. A. Jenkinson, J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979).
  19. J. C. Stover, S. A. Serati, C. H. Gillespie, “Calculation of surface statistics from light scatter,” Opt. Eng. 23, 406–412 (1984).
  20. J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989).
  21. J. M. Bennett, J. J. Shaffer, Y. Shibano, Y. Namba, “Float polishing of optical materials,” Appl. Opt. 26, 696–703 (1987). [CrossRef] [PubMed]
  22. D. W. Reicher, C. F. Kranenberg, R. S. Stowell, K. C. Jungling, J. R. McNeil, “Fabrication of optical surfaces with low subsurface damage using a float polishing process,” in Laser Induced Damage in Optical Materials: 1991, Proc. Soc. Photo-Opt. Instrum. Eng. 1624, 161–171 (1991). [CrossRef]
  23. P. A. Temple, “Examination of laser damage sites of transparent surfaces and films using internal reflection microscopy,” in Laser Induced Damage in Optical Materials: 1979, Natl. Bur. Stand. (U.S.) Spec. Publ. 568, 333–341 (1980).
  24. P. A. Temple, “Total internal reflection microscopy: a surface inspection technique,” Appl. Opt. 20, 2656–2664 (1981). [CrossRef] [PubMed]
  25. P. A. Temple, W. H. Lowdermilk, D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21, 3249–3255 (1982). [CrossRef] [PubMed]
  26. S. N. Jabr, “Total internation reflection microscopy: inspection of surfaces of high bulk scatter materials,” Appl. Opt. 24, 1689–1692 (1985). [CrossRef] [PubMed]
  27. F. L. Williams, C. K. Carniglia, B. J. Pond, “Investigation of thin films using total internal reflection microscopy,” in Laser Induced Damage in Optical Materials: 1989, Natl. Inst. Stand. Technol. (U.S.) Spec. Publ. 801, 299–308 (1990). [CrossRef]
  28. F. L. Williams, G. A. Petersen, R. A. Schmell, C. K. Carniglia, “Observation and control of thin-film defects using in-situ total internal reflection microscopy,” in Laser-Induced Damage in Optical Materials: 1991, Proc. Soc. Photo-Opt. Instrum. Eng. 1624, 256–269 (1991). [CrossRef]
  29. F. L. Williams, G. A. Petersen, C. K. Carniglia, B. J. Pond, “In-situ characterization of thin-film defect generation using total internal reflection microscopy,” J. Vac. Sci. Technol. A (to be published).
  30. S. O. Rice, “Reflection of electromagnetic waves by slightly rough surfaces,”in The Theory of Electromagnetic Waves, M. Kline, ed. (Interscience, New York, 1951;The Theory of Electromagnetic Waves, Dover, New York, 1963).
  31. E. L. Church, H. A. Jenkinson, J. M. Zavada, “Measurement of the finish of diamond-turned metal surfaces by differential light scattering,” Opt. Eng. 26, 360–374 (1977), App. B.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited