OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 32, Iss. 2 — Jan. 10, 1993
  • pp: 166–173

Digital optical cellular image processor (DOCIP): experimental implementation

K.-S. Huang, A. A. Sawchuk, B. K. Jenkins, P. Chavel, J.-M. Wang, A. G. Weber, C.-H. Wang, and I. Glaser  »View Author Affiliations


Applied Optics, Vol. 32, Issue 2, pp. 166-173 (1993)
http://dx.doi.org/10.1364/AO.32.000166


View Full Text Article

Enhanced HTML    Acrobat PDF (1174 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate experimentally the concept of the digital optical cellular image processor architecture by implementing one processing element of a prototype optical computer that includes a 54-gate processor, an instruction decoder, and electronic input–output interfaces. The processor consists of a two-dimensional (2-D) array of 54 optical logic gates implemented by use of a liquid-crystal light valve and a 2-D array of 53 subholograms to provide interconnections between gates. The interconnection hologram is fabricated by a computer-controlled optical system.

© 1993 Optical Society of America

History
Original Manuscript: September 19, 1991
Published: January 10, 1993

Citation
K.-S. Huang, A. A. Sawchuk, B. K. Jenkins, P. Chavel, J.-M. Wang, A. G. Weber, C.-H. Wang, and I. Glaser, "Digital optical cellular image processor (DOCIP): experimental implementation," Appl. Opt. 32, 166-173 (1993)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-32-2-166


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “A cellular hypercube architecture for image processing,” in Applications of Digital Image Processing X, A. G. Tescher, ed., Proc. Soc Photo-Opt. Instrum. Eng.829, 331–338 (1987).
  2. K. S. Huang, “A digital optical cellular image processor (DOCIP): theory, architecture and implementation,” Ph.D. dissertation (Department of Electrical Engineering, University of Southern California, Los Angeles, Calif., 1988), USC-SIPI Rep. No. 133 [also available as Vol. 24 of World Scientific Series in Computer Science (World Scientific, Singapore, 1990)].
  3. K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra and digital optical cellular image processor design,” Computer Vis. Graph. Image Process. 45, 295–345 (1989). [CrossRef]
  4. K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary image algebra representations of optical cellular logic and symbolic substitution,” J. Opt. Soc. Am. A 4, 87 (1987).
  5. K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “An image algebra representation of parallel optical binary arithmetic,” Appl. Opt. 28, 1263–1278 (1989). [CrossRef] [PubMed]
  6. K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Optical cellular logic architectures based on binary image algebra,” in Proceedings of the IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Machine Intelligence (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 19–26.
  7. B. K. Jenkins, A. A. Sawchuk, T. C. Strand, B. H. Soffer, “Sequential optical logic implementation,” Appl. Opt. 23, 3455–3464 (1984); J. Opt. Soc. Am. 72, 1721 (1982). [CrossRef] [PubMed]
  8. A. A. Sawchuk, T. C. Strand, “Digital optical computing,” Proc. IEEE 72, 758–779 (1984). [CrossRef]
  9. P. Chavel, R. Forchheimer, B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Architectures for a sequential optical logic processor,” in Proceedings of the Tenth International Optical Computing Conference (Institute of Electrical and Electronics Engineers, New York, 1983), pp. 6–12.
  10. B. K. Jenkins, P. Chavel, R. Forchheimer, A. A. Sawchuk, T. C. Strand, “Architectural implications of a digital optical processor,” Appl. Opt. 23, 3465–3474 (1984). [CrossRef] [PubMed]
  11. H. Bartelt, S. K. Case, “High-efficiency hybrid computer-generated hologram,” Appl. Opt. 21, 2886–2890 (1982). [CrossRef] [PubMed]
  12. B. K. Jenkins, A. A. Sawchuk, “Optical cellular logic architectures for image processing,” in IEEE Computer Society Workshop on Computer Architecture for Pattern Analysis and Image Database Management (Institute of Electrical and Electronics Engineers, New York, 1985), pp. 61–65.
  13. A. A. Sawchuk, B. K. Jenkins, “Optical cellular logic processors,” J. Opt. Soc. Am. A 2, 22 (1985).
  14. B. J. Chang, C. D. Leonard, “Dichromated gelatin for the fabrication of holographic optical elements,” Appl. Opt. 18, 2407–2417 (1979). [CrossRef] [PubMed]
  15. B. J. Chang, “Dichromated gelatin holograms and their applications,” Opt. Eng. 19, 642–648 (1980).
  16. B. J. Chang, “Post-processing of developed dichromated gelatin holograms,” Opt. Commun. 17, 270 (1976). [CrossRef]
  17. R. G. Brandes, E. E. Francois, T. A. Shankoff, “Preparation of dichromated gelatin films for holography,” Appl. Opt. 8, 2346–2348 (1969). [CrossRef] [PubMed]
  18. M. Chang, “Dichromated gelatin of improved optical quality,” Appl. Opt. 10, 2550–2551 (1971). [CrossRef] [PubMed]
  19. R. K. Curran, T. A. Shankoff, “The mechanism of hologram formation in dichromated gelatin,” Appl. Opt. 9, 1651–1657 (1970). [CrossRef] [PubMed]
  20. L. H. Lin, “Hologram formation in hardened dichromated gelatin films,” Appl. Opt. 8, 963–966 (1969). [CrossRef] [PubMed]
  21. K. M. Johnson, M. Armstrong, L. Hesselink, J. W. Goodman, “Multiple multiple-exposure hologram,” Appl. Opt. 24, 4467–4472 (1985). [CrossRef] [PubMed]
  22. B. K. Jenkins, A. A. Sawchuk, T. C. Strand, “Spatial light modulator requirements for sequential optical logic,” J. Opt. Soc. Am. 73, 1950 (1983).
  23. K. S. Huang, A. A. Sawchuk, B. K. Jenkins, P. Chavel, J. M. Wang, A. G. Weber, C. H. Wang, I. Glasser, “Implementation of a prototype digital optical cellular image processor (DOCIP),” in Optical Computing 1988, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, 687–694 (1988).
  24. T. E. Bell, “Optical computing: a field in flux,” IEEE Spectrum 23, 34–57 (1986).
  25. F. B. McCormick, A. L. Lentine, R. L. Morrison, S. L. Walker, L. M. F. Chirovsky, L. A. D’Asaro, “Simultaneous parallel operation of an array of symmetric self-electrooptic effect devices,” in OSA Annual Meeting, Vol. 18 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), paper MII4.
  26. A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. F. Chirovsky, “Symmetric self-electrooptic effect device: optical set–reset latch,” Appl. Phys. Lett. 52, 1419–1421 (1988). [CrossRef]
  27. A. L. Lentine, L. M. F. Chirovsky, L. A. D’Asaro, C. W. Tu, D. A. B. Miller, “Performance scaling and subnanosecond switching of self-electrooptic effect devices,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1989), paper W03.
  28. D. A. Jared, T. M. Slagle, K. M. Johnson, K. Wagner, “Optically addressed CMOS VLSI liquid-crystal spatial light modulators,” in OSA Annual Meeting, Vol. 15 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper FV2.
  29. M. J. O’Callaghan, M. A. Handschy, K. Arnett, “Theory of diffraction and four-wave mixing by binary, optically addressed spatial light modulators,” in OSA Annual Meeting, Vol. 15 of 1990 Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper FY5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited