OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 32, Iss. 20 — Jul. 10, 1993
  • pp: 3736–3754

Limited-data computed tomography algorithms for the physical sciences

Dean Verhoeven  »View Author Affiliations


Applied Optics, Vol. 32, Issue 20, pp. 3736-3754 (1993)
http://dx.doi.org/10.1364/AO.32.003736


View Full Text Article

Enhanced HTML    Acrobat PDF (2405 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Five limited-data computed tomography algorithms are compared. The algorithms used are adapted versions of the algebraic reconstruction technique, the multiplicative algebraic reconstruction technique, the Gerchberg–Papoulis algorithm, a spectral extrapolation algorithm descended from that of Harris [J. Opt. Soc. Am. 54, 931–936 (1964)], and an algorithm based on the singular value decomposition technique. These algorithms were used to reconstruct phantom data with realistic levels of noise from a number of different imaging geometries. The phantoms, the imaging geometries, and the noise were chosen to simulate the conditions encountered in typical computed tomography applications in the physical sciences, and the implementations of the algorithms were optimized for these applications. The multiplicative algebraic reconstruction technique algorithm gave the best results overall; the algebraic reconstruction technique gave the best results for very smooth objects or very noisy (20-dB signal-to-noise ratio) data. My implementations of both of these algorithms incorporate a priori knowledge of the sign of the object, its extent, and its smoothness. The smoothness of the reconstruction is enforced through the use of an appropriate object model (by use of cubic B-spline basis functions and a number of object coefficients appropriate to the object being reconstructed). The average reconstruction error was 1.7% of the maximum phantom value with the multiplicative algebraic reconstruction technique of a phantom with moderate-to-steep gradients by use of data from five viewing angles with a 30-dB signal-to-noise ratio.

© 1993 Optical Society of America

History
Original Manuscript: November 23, 1992
Published: July 10, 1993

Citation
Dean Verhoeven, "Limited-data computed tomography algorithms for the physical sciences," Appl. Opt. 32, 3736-3754 (1993)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-32-20-3736


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. E. Snyder, R. G. Joklik, H. G. Semerjian, “Laser tomographic measurements in an unsteady jet-diffusion flame,” presented at the Annual Meeting of the American Society of Mechanical Engineers, San Francisco, Calif., 10–15 December 1989.
  2. M. Hino, T. Aono, M. Nakajima, S. Yuta, “Light emission computed tomography system for plasma diagnostics,” Appl. Opt. 26, 4742–4746 (1987). [CrossRef] [PubMed]
  3. G. W. Faris, R. L. Byer, “Three-dimensional beam-deflection tomography of a supersonic jet,” Appl. Opt. 27, 5202–5212 (1988). [CrossRef] [PubMed]
  4. D. D. Verhoeven, “An experimental study of the performance of an optical tomography system,” in Laser Interferometry: Quantitave Analysis of Interferograms, R. J. Pryputniewicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1162, 369–377 (1990).
  5. K. M. Hanson, G. W. Wecksung, “Bayesian approach to limited-angle reconstruction in computed tomography,” J. Opt. Soc. Am. 73, 1501–1509 (1983). [CrossRef]
  6. G. T. Herman, Image Reconstruction from Projections (Academic, New York, 1980).
  7. K. M. Hanson, G. W. Wecksung, “Local basis function approach to computed tomography,” Appl. Opt. 24, 4028–4039 (1985). [CrossRef] [PubMed]
  8. H. S. Hou, H. C. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. Speech Signal Process. ASSP-26, 508–517 (1978).
  9. B. R. Hunt, “Bayesian methods in nonlinear digital image restoration,” IEEE Trans. Comput. C-26, 219–229 (1977). [CrossRef]
  10. E. Levitan, G. T. Herman, “A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography,” IEEE Trans. Med. Imag. MI-6, 185–192 (1987). [CrossRef]
  11. L. A. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imag. MI-1, 113–121 (1982). [CrossRef]
  12. R. M. Lewitt, G. Muehllehner, “Accelerated iterative reconstruction for positron emission tomography based on the EM algorithm for maximum likelihood estimation,” IEEE Trans. Med. Imag. MI-5, 16–22 (1986). [CrossRef]
  13. S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985). [CrossRef]
  14. C. K. Rushforth, A. E. Crawford, Y. Zhou, “Least-squares reconstruction of objects with missing high-frequency components,” J. Opt. Soc. Am. 72, 204–211 (1982). [CrossRef]
  15. S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985). [CrossRef]
  16. S. Kawata, O. Nakamura, S. Minami, “Optical microscope tomography. I. Support constraint,” J. Opt. Soc. Am. A 4, 292–297 (1987). [CrossRef]
  17. O. Nakamura, S. Kawata, S. Minami, “Optical microscope tomography. II. Nonnegative constraint by a gradient-projection method,” J. Opt. Soc. Am. A 5, 554–561 (1988). [CrossRef]
  18. J. B. Abbiss, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983). [CrossRef]
  19. B. R. Frieden, “Restoring with maximum likelihood and maximum entropy,” J. Opt. Soc. Am. 62, 511–518 (1972). [CrossRef] [PubMed]
  20. G. Minerbo, “MENT: a maximum entropy algorithm for reconstructing a source from projection data,” Comput. Graph. Image Process. 10, 48–68 (1979). [CrossRef]
  21. S. F. Gull, T. J. Newton, “Maximum entropy tomography,” Appl. Opt. 25, 156–160 (1986). [CrossRef] [PubMed]
  22. E. S. Meinel, “Maximum-entropy image restoration: Lagrange and recursive techniques,” J. Opt. Soc. Am. A 5, 25–29 (1988). [CrossRef]
  23. E. T. Jaynes, “Prior probabilities,” IEEE Trans. Syst. Sci. Cybern. SSC-4, 227–241 (1968). [CrossRef]
  24. S. J. Wernecke, L. R. D’Addario, “Maximum entropy image reconstruction,” IEEE Trans. Comput. C-26, 351–364 (1977). [CrossRef]
  25. S. F. Gull, G. J. Daniel, “Image reconstruction from incomplete and noisy data,” Nature (London) 272, 686–690 (1978). [CrossRef]
  26. B. R. Frieden, D. C. Wells, “Restoring with maximum entropy. III. Poisson sources and backgrounds,” J. Opt. Soc. Am. 68, 93–103 (1978). [CrossRef]
  27. R. Gordon, “A tutorial on ART,” IEEE Trans. Nucl. Sci. NS-21, 78–93 (1974).
  28. R. Gordon, R. Bender, G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471–481 (1970). [CrossRef] [PubMed]
  29. D. D. Verhoeven, “MART-type CT algorithms for the reconstruction of multidirectional interferometric data,” in Laser Interferometry TV: Computer-Aided Interferometry, R. J. Pryputniewicz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1553, 376–387 (1992).
  30. R. Gordon, G. T. Herman, “Three-dimensional reconstruction from projections: a review of algorithms,” Int. Rev. Cytol. 38, 111–151 (1974). [CrossRef] [PubMed]
  31. C. K. Rushforth, A. E. Crawford, Y. Zhou, “Least-squares reconstruction of objects with missing high-frequency components,” J. Opt. Soc. Am. 72, 204–211 (1982). [CrossRef]
  32. D. W. Sweeney, C. M. Vest, “Reconstruction of three-dimensional refractive index fields from multidirection interferometric data,” Appl. Opt. 12, 2649–2664 (1973). [CrossRef] [PubMed]
  33. A. B. Watson, A. Poirson, “Separable two-dimensional discrete Hartley transform,” J. Opt. Soc. Am. A 3, 2001–2004 (1986). [CrossRef]
  34. R. N. Bracewell, “Strip integration in radio astronomy,” Aust. J. Phys. 9, 198–217 (1956). [CrossRef]
  35. R. W. Gerchberg, “Super-resolution through error energy reduction,” Opt. Acta 21, 709–720 (1974). [CrossRef]
  36. A. Papoulis, “A new algorithm in spectral analysis and band-limited extrapolation,” IEEE Trans. Circuits Syst. CAS-22, 735–742 (1975). [CrossRef]
  37. T. Sato, S. J. Norton, M. Linzer, O. Ikeda, M. Hirama, “Tomographic image reconstruction from limited projections using iterative revisions in image and transform spaces,” Appl. Opt. 20, 395–399 (1981). [CrossRef] [PubMed]
  38. N. Baba, K. Murata, “Image reconstruction from limited-angle projections,” Optik 60, 327–332 (1982).
  39. K. C. Tam, V. Perez-Mendez, “Tomographical imaging with limited angle input,” J. Opt. Soc. Am. 71, 582–592 (1981). [CrossRef]
  40. J. L. Harris, “Diffraction and resolving power,” J. Opt. Soc. Am. 54, 931–936 (1964). [CrossRef]
  41. T. Inouye, “Image reconstruction with limited angle projection data,” IEEE Trans. Nucl. Sci. NS-26, 2666–2669 (1979).
  42. K. M. Hanson, “Computed tomographic (CT) reconstruction from limited projection angles,” in Application of Optical Instrumentation in Medicine X, G. D. Fullerton, A. G. Haus, J. A. Mulvaney, W. S. Properzio, eds., Proc. Soc. Photo-Opt. Instrum. Eng.347, 166–173 (1982). [CrossRef]
  43. B. P. Medoff, W. R. Brody, M. Nassi, A. Macovski, “Iterative convolution backprojection algorithms for image reconstruction from limited data,” J. Opt. Soc. Am. 73, 1493–1500 (1983). [CrossRef]
  44. D. W. Watt, C. M. Vest, “Consistent iterative convolution: a coupled approach to tomographic reconstruction,” J. Opt. Soc. Am. A 6, 44–51 (1989). [CrossRef]
  45. C. M. Vest, I. Prikryl, “Tomography by iterative convolution: empirical study and application to interferometry,” Appl. Opt. 23, 2433–2440 (1984). [CrossRef] [PubMed]
  46. K. C. Tam, V. Perez-Mendex, “Limited angle three-dimensional reconstructions using Fourier transform iterations and Radon transform iterations,” Opt. Eng. 20, 586–589 (1981).
  47. J. B. Abbiss, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983). [CrossRef]
  48. A. Lent, “A convergent algorithm for maximum entropy image restoration, with a medical x-ray application,” in 1976 SPSE Conference Proceedings, R. Shaw, ed., (Society of Photographic Scientists and Engineers, Washington, D.C., 1977), pp. 249–257.
  49. D. C. Youla, H. Webb, “Image restoration by the method of convex projections. Part 1. Theory,” IEEE Trans. Med. Imag. MI-1, 81–94 (1982). [CrossRef]
  50. M. I. Sezan, H. Stark, “Image restoration by the method of convex projections. Part 2. Applications and numerical results,” IEEE Trans. Med. Imag. MI-1, 95–101 (1982). [CrossRef]
  51. M. Sezan, H. Stark, “Tomographic image reconstruction from incomplete view data by convex projections and direct Fourier inversion,” IEEE Trans. Med. Imag. MI-3, 91–98 (1984). [CrossRef]
  52. P. Oskoui-Fard, H. Sark, “Tomographic image reconstruction using the theory of convex projections,” IEEE Trans. Med. Imag. 7, 45–58 (1988). [CrossRef]
  53. C. I. Podilchuk, R. J. Mammone, “Step size for the general iterative image recovery algorithm,” Opt. Eng. 27, 806–811 (1983).
  54. D. D. Verhoeven, “Application of computed tomography and holographic interferometry to the study of transparent media,” Rep. 38501 (Institut Frangais du Pétrole, Rueil-Malmaison, France, 1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited